Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Semantics Based Intelligent Search in Large Digital Repositories Using Hadoop MapReduce

  • Conference paper
Ubiquitous Computing and Ambient Intelligence. Personalisation and User Adapted Services (UCAmI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8867))

  • 3227 Accesses

Abstract

Information contained in large digital repositories consisting of billions of documents represented in various formats make it difficult to retrieve the desired information. It is necessary to develop techniques that are accurate and fast enough to retrieve the desired information from hay stack of online digital repositories. On one hand, Keyword based systems and techniques have high recall and performance, however, they have low precision. On the other hand, semantics based systems have high precision and good recall, however, their performance decreases with data growth. Therefore, to improve precision and performance, we propose semantics based searching framework using Hadoop MapReduce to process the data at large scale. We apply semantic techniques to extract required information from digital documents and MapReduce programming model to apply these techniques. Application of semantic techniques using MapReduce distributed model will result in high precision and good performance of user query result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.: Big data: The next frontier for innovation, competition and productivity

    Google Scholar 

  2. Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic inquiry and word count: Liwc 2001, vol. 71, p. 2001. Lawrence Erlbaum Associates, Mahway (2001)

    Google Scholar 

  3. Moffat, A., Zobel, J.: Self-indexing inverted files for fast text retrieval. ACM Transactions on Information Systems (TOIS) 14, 349–379 (1996)

    Article  Google Scholar 

  4. IEEE-org: IEEE digital library, http://ieeexplore.ieee.org/xplore/home.jsp

  5. ACM-Org: ACM digital library, http://dl.acm.org/

  6. National Library of Medicine.: Medline, http://www.nlm.nih.gov/bsd/pmresources.html

  7. Khattaka, A.: Context-aware search in dynamic repositories of digital documents

    Google Scholar 

  8. Bonino, D., Corno, F., Farinetti, L., Bosca, A.: Ontology driven semantic search. WSEAS Transaction on Information Science and Application 1, 1597–1605 (2004)

    Google Scholar 

  9. Rodríguez, E.A.: Determining semantic similarity among entity classes from different ontologies. IEEE Transactions on Knowledge and Data Engineering

    Google Scholar 

  10. Laclavík, M., Šeleng, M., Hluchý, L.: Towards large scale semantic annotation built on mapReduce architecture. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part III. LNCS, vol. 5103, pp. 331–338. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. ACM SIGOPS Operating Systems Review 37, 29–43 (2003)

    Article  Google Scholar 

  12. Borthakur, D.: Facebook has the worlds largest hadoop cluster

    Google Scholar 

  13. Yuan, P., Sha, C., Wang, X., Yang, B., Zhou, A., Yang, S.: XML structural similarity search using mapReduce. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010. LNCS, vol. 6184, pp. 169–181. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. Communications of the ACM 51, 107–113 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Idris, M., Hussain, S., Ali, T., Kang, B.H., Lee, S. (2014). Semantics Based Intelligent Search in Large Digital Repositories Using Hadoop MapReduce. In: Hervás, R., Lee, S., Nugent, C., Bravo, J. (eds) Ubiquitous Computing and Ambient Intelligence. Personalisation and User Adapted Services. UCAmI 2014. Lecture Notes in Computer Science, vol 8867. Springer, Cham. https://doi.org/10.1007/978-3-319-13102-3_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13102-3_48

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13101-6

  • Online ISBN: 978-3-319-13102-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics