Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Weighted Linear Fractional Programming for Possibilistic Multi-objective Problem

  • Conference paper
Computational Intelligence in Information Systems

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 331))

  • 1336 Accesses

Abstract

The assessment of the weights of objective function plays an important role in a multi-objective process. This paper discusses a weighting method for linear fractional programming to solve possibilistic programming of the multi-objective decision-making problem. The minimal and maximal values of the objective function are utilized in the determination the weight value. This analysis concludes that it is worthwhile to pursue proposed solution approach to the multi-objective evaluation scheme, which addresses some limitation to determine the weight values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Saaty, L.: The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill, New York (1980)

    MATH  Google Scholar 

  2. Marler, R.T., Arora, J.S.: Weighted sum method for multi-objective optimization: new insights. Structural and Multidisciplinary Optimization 41(6), 853–862 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Jubril, A.M.: A nonlinear weights selection in weighted sum for convex multiobjective optimization. Facta universitatis - series: Mathematics and Informatics 27(3), 357–372 (2012)

    MATH  MathSciNet  Google Scholar 

  4. Moller, B., Graf, W., Beer, M.: Safety assessment of structures in view of fuzzy randomness. Computers and Structures 81(15), 1567–1582 (2003)

    Article  Google Scholar 

  5. Zeleny, M.: The pros and cons of goal programming. Computers and Operations Research 8(4), 357–359 (1981)

    Article  MathSciNet  Google Scholar 

  6. Inuiguchi, M., Sakawa, M.: Possible and necessary efficiency in possibilistic multiobjective linear programming problems and possible efficiency test. Fuzzy Sets and Systems 78(2), 231–241 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bouyssou, D.: Modeling inaccurate determination, uncertainty, imprecision using multiple criteria. In: Lockett, A.G., Islei, G. (eds.) Improving Decision Making in Organizations. Lecture Notes in Economics and Mathematical Systems, vol. 335, pp. 78–87. Springer (1989)

    Google Scholar 

  8. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dantzig, G.: Linear programming under uncertainty. Management Science 1(3-4), 197–206 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  10. Sengupta, J.K.: Stochastic goal programming with estimated parameters. Journal of Economics 39(3-4), 225–243 (1979)

    Article  MATH  Google Scholar 

  11. Zimmermann, H.-J.: Description and optimization of fuzzy systems. International Journal General Systems 2(4), 209–215 (1976)

    Article  MATH  Google Scholar 

  12. Zimmermann, H.-J.: Fuzzy programming and linear programming with several objective functions. Fuzzy Sets System 1(1), 45–55 (1978)

    Article  MATH  Google Scholar 

  13. Inuiguchi, M., Ichihashi, H., Tanaka, H.: Fuzzy programming: A survey of recent developments. In: Slowinski, R., Teghem, J. (eds.) Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming Under Uncertainty, pp. 45–68. Kluwer Academics, Dordrecht (1990)

    Chapter  Google Scholar 

  14. Sakawa, M.: Fuzzy sets and interactive multi-objective optimization. Applied Information Technology. Plenum Press, New York (1993)

    Book  Google Scholar 

  15. Julien, A.: An extension to possibilistic linear programming. Fuzzy Sets and Systems 64(2), 195–206 (1994)

    Article  MathSciNet  Google Scholar 

  16. Inuiguchi, M., Ramik, J.: Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets and Systems 111(1), 3–28 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kornbluth, J., Steuer, R.: Multiple objective linear fractional programming. Management Science 27(9), 1024–1039 (1981)

    Article  MATH  Google Scholar 

  18. Luhandjula, M.K.: Fuzzy approaches for multiple objective linear fractional optimizations. Fuzzy Sets and Systems 13(1), 11–23 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zadeh, L.A.: Optimality and non-scalar-valued performance criteria. IEEE Transactions on Automatic Control 8(59), 59–60 (1963)

    Article  Google Scholar 

  20. Charnes, A., Cooper, W.: Programming with linear fractional functions. Naval Research Logistics Quarterly 9(3-4), 181–186 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nureize, A., Watada, J.: Linear Fractional Programming for Fuzzy Random based Possibilistic Programming Problem. International Journal of Simulation Systems, Science & Technology 14(1), 24–30 (2014)

    Google Scholar 

  22. Arbaiy, N., Watada, J.: Constructing Fuzzy Random Goal Constraints for Stochastic Fuzzy Goal Programming. In: Huynh, V.-N., Nakamori, Y., Lawry, J., Inuiguchi, M. (eds.) Integrated Uncertainty Management and Applications. AISC, vol. 68, pp. 293–304. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Lin, P.-C., Wu, B., Watada, J.: Kolmogorov-Smirnov Two Sample Test with Continuous Fuzzy Data. Integrated Uncertainty Management and Applications 68, 175–186 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nureize Arbaiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Arbaiy, N. (2015). Weighted Linear Fractional Programming for Possibilistic Multi-objective Problem. In: Phon-Amnuaisuk, S., Au, T. (eds) Computational Intelligence in Information Systems. Advances in Intelligent Systems and Computing, vol 331. Springer, Cham. https://doi.org/10.1007/978-3-319-13153-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13153-5_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13152-8

  • Online ISBN: 978-3-319-13153-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics