Abstract
We propose a formal model for situated and reactive multi-agent systems based on correlated discrete random walks. In order to study this model, we construct a continuous approximation ending up on the Fokker-Planck equation. This result allows us to determine an optimal parameterization for the agents, with respect to the system’s objective. Numerical simulations confirm the approach from two points of view, the validity of the continuous model and the optimality of the agents’ parameterization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Benaim, M., Le Boudec, J.Y.: A class of mean field interaction models for computer and communication systems. Performance Evaluation 65 (2008)
Benaouda, A., Zerhouni, N., Varnier, C.: Une approche multi-agents coopératifs pour la gestion des ressources matérielles dans un contexte multi-sites de e-manufacturing
Bernstein, D.S., Zilberstein, S., Immerman, N.: The complexity of decentralized control of markov decision processes. In: Proc. of the Sixteenth Conference on Uncertainty in Artificial Intelligence (2000)
Boes, J., Migeon, F., Gatto, F.: Self-Organizing Agents for an Adaptive Control of Heat Engines (short paper). In: International Conference on Informatics in Control, Automation and Robotics (ICINCO) (2013)
Bordenave, C., Anantharam, V.: Optimal control of interacting particle systems (June 2007), http://hal.archives-ouvertes.fr/hal-00397327
Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-oriented software development methodology. JAAMAS 8(3) (2004)
Chen, X., Hambrock, R., Lou, Y.: Evolution of conditional dispersal: a reaction–diffusion–advection model. Journal of Mathematical Biology 57 (2008)
Fadugba, S.E., Edogbanya, O.H., Zelibe, S.C.: Crank Nicolson method for solving parabolic PDEs. Int. Journal of Applied Math. and Modeling IJA2M (2013)
Fechner, G.: Elemente der Psychophysik. No. Bd. 1 in Elemente der Psychophysik, Breitkopf und Härtel (1860)
Gast, N., Gaujal, B.: A mean field approach for optimization in particle systems and applications. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2009)
Gast, N., Gaujal, B., Le Boudec, J.Y.: Mean field for markov decision processes: from discrete to continuous optimization. IEEE Transactions on Automatic Control (2012)
Guéant, O., Lasry, J.-M., Lions, P.-L.: Mean field games and applications. In: Paris-Princeton Lectures on Mathematical Finance (2011)
Guestrin, C., Koller, D., Parr, R.: Multiagent planning with factored MDPs. In: Neural Information Processing Systems (NIPS) (2001)
Ijspeert, A.J., Martinoli, A., Billard, A., Gambardella, L.M.: Collaboration through the exploitation of local interactions in autonomous collective robotics: The stick pulling experiment. Autonomous Robots 11 (2001)
Jorquera, T., Georgé, J.P., Gleizes, M.P., Régis, C.: A Natural Formalism and a MultiAgent Algorithm for Integrative Multidisciplinary Design Optimization. In: International Conference on Intelligent Agent Technology (IAT) (2013)
Jüngel, A.: Diffusive and nondiffusive population models. In: Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences (2010)
Le Boudec, J.Y., McDonald, D., Mundinger, J.: A generic mean field convergence result for systems of interacting objects. In: Quantitative Evaluation of Systems (QEST). IEEE (2007)
Lepagnot, J., Nakib, A., Oulhadj, H., Siarry, P.: A new multiagent algorithm for dynamic continuous optimization. International Journal of Applied Metaheuristic Computing (IJAMC) (2010)
Lerman, K., Galstyan, A.: A general methodology for mathematical analysis of multi-agent systems. ISI-TR-529, USC Information Sciences Institute, Marina del Rey, CA (2001)
Liggett, T.M.: Particle Systems. Springer (1985)
Liu, J., Jing, H., Tang, Y.: Multi-agent oriented constraint satisfaction. Artificial Intelligence (2002)
Munkres, J.R.: Topology: a first course, vol. 23. Prentice-Hall, Englewood Cliffs (1975)
Puterman, M.L.: Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons (2009)
Risken, H.: Fokker-Planck Equation. Springer (1984)
Rougemaille, S., Arcangeli, J.-P., Gleizes, M.-P., Migeon, F.: ADELFE design, AMAS-ML in action. In: Artikis, A., Picard, G., Vercouter, L. (eds.) ESAW 2008. LNCS, vol. 5485, pp. 105–120. Springer, Heidelberg (2009)
Shigesada, N., Kawasaki, K., Teramoto, E.: Spatial segregation of interacting species. Journal of Theoretical Biology 79 (1979)
Shoham, Y., Leyton-Brown, K.: Multiagent systems: Algorithmic, game-theoretic, and logical foundations. Cambridge University Press (2009)
Spaan, M.T., Melo, F.S.: Interaction-driven markov games for decentralized multiagent planning under uncertainty. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 1 (2008)
Spicher, A., Fatès, N.A., Simonin, O., et al.: From reactive multi-agent models to cellular automata-illustration on a diffusion-limited aggregation model. In: Proceedings of ICAART 2009 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Stuker, S., Adreit, F., Couveignes, JM., Gleizes, MP. (2014). Continuous Approximation of a Discrete Situated and Reactive Multi-agent System: Contribution to Agent Parameterization. In: Dam, H.K., Pitt, J., Xu, Y., Governatori, G., Ito, T. (eds) PRIMA 2014: Principles and Practice of Multi-Agent Systems. PRIMA 2014. Lecture Notes in Computer Science(), vol 8861. Springer, Cham. https://doi.org/10.1007/978-3-319-13191-7_30
Download citation
DOI: https://doi.org/10.1007/978-3-319-13191-7_30
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13190-0
Online ISBN: 978-3-319-13191-7
eBook Packages: Computer ScienceComputer Science (R0)