Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

N-gram Based Approach for Opinion Mining of Punjabi Text

  • Conference paper
Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8875))

Abstract

Opinion mining is the process of analyzing views, attitude or opinions of a writer or a speaker. Research in this particular area involves the detection of opinions from the text of any language. Vast amount of work has been done for the English language. In spite of lack of resources for Indian languages, work has been done for Telugu, Bengali and Hindi language. In this paper, we proposed a hybrid research approach for the emotion/opinion mining of the Punjabi text. Hybrid technique is the combination of Naïve Bayes and N-grams. As the part of presented research, we have extracted the features of N-grams model which are used to train Naïve Bayes. The trained model is then validated using the testing data. Results obtained are also compared with already existing approaches and the accuracy of the results shows the better efficacy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Biadsy, F., Mckeown, K., Agarwal, A.: Contextual phrase-level polarity analysis using lexical affect scoring and syntactic n-grams (2009)

    Google Scholar 

  2. Esuli, A., Sebastiani, F., Baccianella, S.: Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In: Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC 2010), Valletta, Malta (2010)

    Google Scholar 

  3. Das, A.: Opinion Extraction and Summarization from Text Documents in Bengali. Doctoral Thesis. UMI Order Number: UMI Order No. GAX95-09398. Jadavpur University (2011)

    Google Scholar 

  4. Wiebe, J., Banea, C., Mihalcea, R.: A bootstrapping method for building subjectivity lexicons for languages with scarce resources. In: Proceedings of the Sixth International Language Resources and Evaluation (LREC 2008), Marrakech, Morocco (2008)

    Google Scholar 

  5. Bandyopadhyay, S., Das, A.: SentiWordNet for Bangla (2010)

    Google Scholar 

  6. Bandyopadhyay, S., Das, A.: SentiWordNet for Indian Languages (2010)

    Google Scholar 

  7. Arora, P.: Sentiment Analysis for Hindi Language. Masters thesis, IIT, Hyderabad (2013)

    Google Scholar 

  8. Sebastiani, F., Esuli, A.: Sentiwordnet: A publicly available lexical resource for opinion mining. In: Proceedings of the 5th Conference on Language Resources and Evaluation (LREC 2006), p. 54 (2006)

    Google Scholar 

  9. McKeown, K.R., Hatzivassiloglou, V.: Predicting the semantic orientation of adjectives. In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and Eighth Conference of the European Chapter of the Association for Computational Linguistics, ACL 1998, Stroudsburg, PA, USA, p. 174 (1997)

    Google Scholar 

  10. Liu, B., Hu, M.: Mining and summarizing customer reviews. In: KDD, p. 168 (2004)

    Google Scholar 

  11. Wilson, T., Intelligent, T.W.: Annotating opinions in the world press. In: SIGdial 2003, p. 13 (2003)

    Google Scholar 

  12. Bhattacharyya, P., Joshi, A., Balamurali, A.R.: A fall-back strategy for sentiment analysis in Hindi: A case study (2010)

    Google Scholar 

  13. Rijke, M.D., Kamps, J., Marx, M., Mokken, R.J.: Using wordnet to measure semantic orientation of adjectives. National Institute for, p. 1115 (2004)

    Google Scholar 

  14. Indian Institute of Technology, Hyderabad, http://www.iith.ac.in/

  15. Kim, S.: Determining the sentiment of opinions. In: Proceedings of COLING, p. 1367 (2004)

    Google Scholar 

  16. Hovy, E., Kim, S.: Identifying and analyzing judgment opinions. In: Proceedings of HLT/NAACL 2006, p. 200 (2006)

    Google Scholar 

  17. Vaithyanathan, S., Pang, B., Lee, L.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP), p. 79 (2002)

    Google Scholar 

  18. Ravichandran, D., Rao, D.: Semi-supervised polarity lexicon induction. In: Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2009, Stroudsburg, PA, USA, p. 675 (2009)

    Google Scholar 

  19. Dunphy, D.C., Stone, P.J., Ogilvie, D.M., Smith, M.S.: The General Inquirer: A Computer Approach to Content Analysis. MIT Press, Cambridge (1966)

    Google Scholar 

  20. Turney, P.: Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews (2002)

    Google Scholar 

  21. Wiebe, J.M., O’Hara, T.P., Bruce, R.E.: Development and use of a gold-standard data set for subjectivity classifications. In: Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics on Computational Linguistics, ACL 1999, Stroudsburg, PA, USA, p. 246 (1999)

    Google Scholar 

  22. Wilson, T.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of HLT-EMNLP, pp. 347–354 (2005)

    Google Scholar 

  23. Hatzivassiloglou, V., Yu, H.: Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences. In: Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, EMNLP 2003, Stroudsburg, PA, USA, p. 129 (2003)

    Google Scholar 

  24. Gupta, V.: Automatic Stemming of Words for Punjabi Language. In: Thampi, S.M., Gelbukh, A., Mukhopadhyay, J. (eds.) Advances in Signal Processing and Intelligent Recognition Systems. AISC, vol. 264, pp. 73–84. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  25. http://www.punjabitribuneonline.com

  26. http://www.indotimes.com.au

  27. http://www.beta.ajitjalandhar.com

  28. http://www.rozanaspokesman.com

  29. http://www.dailypunjabtimes.com

  30. http://www.deshsewak.in

  31. http://www.nawanzamana.in

  32. http://www.dailyjanjagriti.com

  33. http://www.punjabpost.in

  34. http://www.seapunjab.com

  35. http://www.ajdiawaaz.com

  36. http://www.malwapost.com

  37. http://www.punjabinfoline.com

  38. http://www.chardhikala.com

  39. http://www.deshvideshtimes.com

  40. http://www.punjab-screen.blogspot.in

  41. http://www.parchanve.wordpress.com

  42. http://www.punjabiaarsi.blogspot.in

  43. http://www.kamalkang.blogspot.in

  44. http://www.shabadsanjh.com

  45. http://www.cs.waikato.ac.nz/ml/weka/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kaur, A., Gupta, V. (2014). N-gram Based Approach for Opinion Mining of Punjabi Text. In: Murty, M.N., He, X., Chillarige, R.R., Weng, P. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2014. Lecture Notes in Computer Science(), vol 8875. Springer, Cham. https://doi.org/10.1007/978-3-319-13365-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13365-2_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13364-5

  • Online ISBN: 978-3-319-13365-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics