Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fast Iris Recognition on Smartphone by means of Spatial Histograms

  • Conference paper
  • First Online:
Biometric Authentication (BIOMET 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8897))

Included in the following conference series:

Abstract.

The iris has been proposed as a highly reliable and stable biometric identifier for person authentication/recognition about two decades ago. Since then, most work in the field has been focused on segmentation and matching algorithms able to work on pictures of whole face or eye region typically captured at close distance, while preserving recognition accuracy. In this paper we present an iris matching algorithm based on spatial histograms that, while showing good recognition performance on some of the most referenced public iris dataset, is also able to perform a one-to-one comparison in a small amount of time thanks to its low computing load, thus resulting particularly suited to iris recognition applications on mobile devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Daugman, J.: High Confidence Visual Recognition of Persons by a Test of Statistical Independence. IEEE PAMI 15(11), 1148–1161 (1993)

    Article  Google Scholar 

  2. Wildes R.: Iris recognition: an emerging biometric technology. Proceedings of the IEEE 85(9) (1997)

    Google Scholar 

  3. Lim, S., Lee, K., Byeon, O., Kim, T.: Efficient Iris Recognition through Improvement of Feature O. Vector and Classifier. ETRI J. 23(2), 61–70 (2001)

    Article  Google Scholar 

  4. Boles, W.W., Boashash, B.: A Human Identification Technique Using Images of the Iris and Wavelet Transform. IEEE Transactions On Signal Processing 46(4), 1185–1188 (1998)

    Article  Google Scholar 

  5. Proenca, H., Alexandre, L.A.: The NICE.I: Noisy Iris Challenge Evaluation – Part I. In: Proceedings of the IEEE First International Conference on Biometrics: Theory, Applications and Systems (2007)

    Google Scholar 

  6. Bowyer, P., Kevin, W.: The results of the NICE.II Iris biometrics competition. Pattern Recognition Letters 33(8), 965–969 (2011)

    Article  Google Scholar 

  7. Jeong, D.S., Hwang, J.B., Kang, K., Won, C., Park, D., Kim, J.: A new iris segmentation method for non-ideal iris images. Image Vision Computing 28(2), 254–260 (2010)

    Article  Google Scholar 

  8. Shin, K., Nam, G., Jeong, D., Cho, D., Kang, B., Park, K., Kim J.: New iris recognition method for noisy iris images. Pattern Recognition Lett., Special Issue Recognition of Visible Wavelength Iris Images Acquired On-The-Move and At-A-Distance

    Google Scholar 

  9. Jeong, D.S., Park, H.-A., Park, K.R., Kim, J.H.: Iris Recognition in Mobile Phone Based on Adaptive Gabor Filter. In: Zhang, D., Jain, A.K. (eds.) ICB 2005. LNCS, vol. 3832, pp. 457–463. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Park, K.R., Park, H., Kang, B.Y., Lee, E.C., Jeong, D.S.: A study on iris localization and recognition on mobile phone. Eur. J. Adv. Signal Process, 1–12 (2007)

    Google Scholar 

  11. Kang, J.S.: Mobile iris recognition systems: An emerging biometric technology. In: International Conference on Computational Science (ICCS) (2010)

    Google Scholar 

  12. Cho, D.H., Park, K.R., Rhee, D.W.: Real-Time Iris Localization for Iris Recognition in Cellular Phone. In: Int’,l Conf. Software Eng., Artificial Intelligence, Networking and Parallel/Distributed Computing, pp. 254–259 (2005)

    Google Scholar 

  13. Cho, D.H., Park, K.R., Rhee, D.W., Kim, Y.G., Yang, J.H.: Pupil and iris localization for iris recognition in mobile phones. In: Proc. SNPD, pp.197–201 (2006)

    Google Scholar 

  14. De Marsico, M., Galdi, C., Nappi, M., Riccio, D.: FIRME: Face and Iris Recognition for Mobile Engagement. Image and Vision Computing (2014)

    Google Scholar 

  15. De Marsico, M., Nappi, M., Riccio, D.: ISIS: Iris Segmentation for Identification System. In: ICPR 2010, pp. 2857–2860 (2010)

    Google Scholar 

  16. Taubin, G.: Estimation Of Planar Curves Surfaces And Nonplanar Space Curves Defined By Implicit Equations, With Applications To Edge And Range Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 1115–1138 (1991)

    Article  Google Scholar 

  17. Proença, H., Alexandre, L.A.: UBIRIS: A Noisy Iris Image Database. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 970–977. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Dobeš, M., Machala, L.: UPOL Iris Image Database (2008). http://phoenix.inf.upol.cz/iris/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Ricciardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Abate, A.F., Nappi, M., Narducci, F., Ricciardi, S. (2014). Fast Iris Recognition on Smartphone by means of Spatial Histograms. In: Cantoni, V., Dimov, D., Tistarelli, M. (eds) Biometric Authentication. BIOMET 2014. Lecture Notes in Computer Science(), vol 8897. Springer, Cham. https://doi.org/10.1007/978-3-319-13386-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13386-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13385-0

  • Online ISBN: 978-3-319-13386-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics