Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Evaluation of Terminological Schema Matching and Its Implications for Schema Mapping

  • Conference paper
PRICAI 2014: Trends in Artificial Intelligence (PRICAI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8862))

Included in the following conference series:

  • 6497 Accesses

Abstract

Recently large amounts of schema data, which describe data structure of various domains such as purchase order, health, publication, geography, agriculture, environment and music, are available over the Web. Schema mapping aims to solve schema heterogeneity problem in schema data. This research thoroughly examines how string similarity metrics and text processing techniques impact on the performance of terminological schema mapping and highlights their limitations. Our experimental study demonstrates that the performance of terminological schema matching is significantly improved by using text processing techniques. However, the performance improvement is slightly different between datasets because of the characteristics of the datasets, and in spite of applying all text processing techniques, some datasets still exhibit low performance. Our research supports the claim that a system which can manage the context dependent characteristics of terminological schema matching is essential for better schema mapping algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cate, B.T., Dalmau, V., Kolaitis, P.G.: Learning schema mappings. In: Proceedings of the 15th International Conference on Database Theory, pp. 182–195. ACM, Berlin (2012)

    Google Scholar 

  2. Glavic, B., Alonso, G., Miller, J.R., Hass, L.M.: TRAMP: Understanding the behavior of schema mappings through provenance. Proceedings of the VLDB Endowment 3(1-2), 1314–1325 (2010)

    Article  Google Scholar 

  3. Ngo, D., Bellahsene, Z., Todorov, K.: Opening the Black Box of Ontology Matching. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 16–30. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Ngo, D., Bellahsene, Z., Coletta, R.: A generic approach for combining linguistic and context profile metrics in ontology matching. In: Meersman, R., et al. (eds.) OTM 2011, Part II. LNCS, vol. 7045, pp. 800–807. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Al-Ghanim, M., Noah, S.A., Sembok, T.M.: Automating XML schema matching: A composite approach. In: International Conference on Electrical Engineering and Informatics (ICEEI) (2011)

    Google Scholar 

  6. Cohen, W.W., Ravikumar, P., Stephen, E.: A Comparison of String Distance Metrics for Name-Matching Tasks. In: IJCAI 2003 Workshop on Information Integration (2003)

    Google Scholar 

  7. Cheatham, M., Hitzler, P.: String Similarity Metrics for Ontology Alignment. In: Alani, H., et al. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 294–309. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A Comparison of String Distance Metrics for Name-Matching Tasks. In: IJCAI 2003 Workshop on Information Integration (2003)

    Google Scholar 

  9. Jimenez, S., Becerra, C., Gelbukh, A., Gonzalez, F.: Generalized Mongue-Elkan Method for Approximate Text String Comparison. In: Gelbukh, A. (ed.) CICLing 2009. LNCS, vol. 5449, pp. 559–570. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Do, H.-H., Rahm, E.: COMA: A system for flexible combination of schema matching approaches. In: Proceedings of the 28th International Conference on Very Large Data Bases, pp. 610–621. VLDB Endowment, Hong Kong (2002)

    Chapter  Google Scholar 

  11. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic Schema Matching with Cupid. In: Proceedings of the 27th International Conference on Very Large Data Bases, pp. 49–58. Morgan Kaufmann Publishers Inc. (2001)

    Google Scholar 

  12. Cheng, W., Lin, H., Sun, Y.: An efficient schema matching algorithm. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005, Part II. LNCS (LNAI), vol. 3682, pp. 972–978. Springer, Heidelberg (2005)

    Google Scholar 

  13. Koudas, N., Sarawagi, S., Srivastava, D.: Record linkage: similarity measures and algorithms. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, pp. 802–803. ACM, Chicago (2006)

    Chapter  Google Scholar 

  14. Cheatham, M., Hitzler, P.: String similarity metrics for ontology alignment. In: Alani, H., et al. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 294–309. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Stoilos, G., Stamou, G., Kollias, S.: A string metric for ontology alignment. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 624–637. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Marie, A., Gal, A.: Boosting schema matchers. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part I. LNCS, vol. 5331, pp. 283–300. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Unal, O., Afsarmanesh, H.: Schema Matching and Integration for Data Sharing Among Collaborating Organizations. Journal of Software 4(3) (2009) (1796217X)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Anam, S., Kim, Y.S., Kang, B.H., Liu, Q. (2014). Evaluation of Terminological Schema Matching and Its Implications for Schema Mapping. In: Pham, DN., Park, SB. (eds) PRICAI 2014: Trends in Artificial Intelligence. PRICAI 2014. Lecture Notes in Computer Science(), vol 8862. Springer, Cham. https://doi.org/10.1007/978-3-319-13560-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13560-1_45

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13559-5

  • Online ISBN: 978-3-319-13560-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics