Abstract
Recently large amounts of schema data, which describe data structure of various domains such as purchase order, health, publication, geography, agriculture, environment and music, are available over the Web. Schema mapping aims to solve schema heterogeneity problem in schema data. This research thoroughly examines how string similarity metrics and text processing techniques impact on the performance of terminological schema mapping and highlights their limitations. Our experimental study demonstrates that the performance of terminological schema matching is significantly improved by using text processing techniques. However, the performance improvement is slightly different between datasets because of the characteristics of the datasets, and in spite of applying all text processing techniques, some datasets still exhibit low performance. Our research supports the claim that a system which can manage the context dependent characteristics of terminological schema matching is essential for better schema mapping algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cate, B.T., Dalmau, V., Kolaitis, P.G.: Learning schema mappings. In: Proceedings of the 15th International Conference on Database Theory, pp. 182–195. ACM, Berlin (2012)
Glavic, B., Alonso, G., Miller, J.R., Hass, L.M.: TRAMP: Understanding the behavior of schema mappings through provenance. Proceedings of the VLDB Endowment 3(1-2), 1314–1325 (2010)
Ngo, D., Bellahsene, Z., Todorov, K.: Opening the Black Box of Ontology Matching. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 16–30. Springer, Heidelberg (2013)
Ngo, D., Bellahsene, Z., Coletta, R.: A generic approach for combining linguistic and context profile metrics in ontology matching. In: Meersman, R., et al. (eds.) OTM 2011, Part II. LNCS, vol. 7045, pp. 800–807. Springer, Heidelberg (2011)
Al-Ghanim, M., Noah, S.A., Sembok, T.M.: Automating XML schema matching: A composite approach. In: International Conference on Electrical Engineering and Informatics (ICEEI) (2011)
Cohen, W.W., Ravikumar, P., Stephen, E.: A Comparison of String Distance Metrics for Name-Matching Tasks. In: IJCAI 2003 Workshop on Information Integration (2003)
Cheatham, M., Hitzler, P.: String Similarity Metrics for Ontology Alignment. In: Alani, H., et al. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 294–309. Springer, Heidelberg (2013)
Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A Comparison of String Distance Metrics for Name-Matching Tasks. In: IJCAI 2003 Workshop on Information Integration (2003)
Jimenez, S., Becerra, C., Gelbukh, A., Gonzalez, F.: Generalized Mongue-Elkan Method for Approximate Text String Comparison. In: Gelbukh, A. (ed.) CICLing 2009. LNCS, vol. 5449, pp. 559–570. Springer, Heidelberg (2009)
Do, H.-H., Rahm, E.: COMA: A system for flexible combination of schema matching approaches. In: Proceedings of the 28th International Conference on Very Large Data Bases, pp. 610–621. VLDB Endowment, Hong Kong (2002)
Madhavan, J., Bernstein, P.A., Rahm, E.: Generic Schema Matching with Cupid. In: Proceedings of the 27th International Conference on Very Large Data Bases, pp. 49–58. Morgan Kaufmann Publishers Inc. (2001)
Cheng, W., Lin, H., Sun, Y.: An efficient schema matching algorithm. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005, Part II. LNCS (LNAI), vol. 3682, pp. 972–978. Springer, Heidelberg (2005)
Koudas, N., Sarawagi, S., Srivastava, D.: Record linkage: similarity measures and algorithms. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, pp. 802–803. ACM, Chicago (2006)
Cheatham, M., Hitzler, P.: String similarity metrics for ontology alignment. In: Alani, H., et al. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 294–309. Springer, Heidelberg (2013)
Stoilos, G., Stamou, G., Kollias, S.: A string metric for ontology alignment. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 624–637. Springer, Heidelberg (2005)
Marie, A., Gal, A.: Boosting schema matchers. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part I. LNCS, vol. 5331, pp. 283–300. Springer, Heidelberg (2008)
Unal, O., Afsarmanesh, H.: Schema Matching and Integration for Data Sharing Among Collaborating Organizations. Journal of Software 4(3) (2009) (1796217X)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Anam, S., Kim, Y.S., Kang, B.H., Liu, Q. (2014). Evaluation of Terminological Schema Matching and Its Implications for Schema Mapping. In: Pham, DN., Park, SB. (eds) PRICAI 2014: Trends in Artificial Intelligence. PRICAI 2014. Lecture Notes in Computer Science(), vol 8862. Springer, Cham. https://doi.org/10.1007/978-3-319-13560-1_45
Download citation
DOI: https://doi.org/10.1007/978-3-319-13560-1_45
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13559-5
Online ISBN: 978-3-319-13560-1
eBook Packages: Computer ScienceComputer Science (R0)