Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Domain Adaptive Neural Networks for Object Recognition

  • Conference paper
PRICAI 2014: Trends in Artificial Intelligence (PRICAI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8862))

Included in the following conference series:

  • 7890 Accesses

Abstract

We propose a simple neural network model to deal with the domain adaptation problem in object recognition. Our model incorporates the Maximum Mean Discrepancy (MMD) measure as a regularization in the supervised learning to reduce the distribution mismatch between the source and target domains in the latent space. From experiments, we demonstrate that the MMD regularization is an effective tool to provide good domain adaptation models on both SURF features and raw image pixels of a particular image data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Baktashmotlagh, M., Harandi, M.T., Lovell, B.C., Salzmann, M.: Unsupervised Domain Adaptation by Domain Invariant Projection. In: ICCV, pp. 769–776 (2013)

    Google Scholar 

  • Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. CVIU 110(3), 346–359 (2008)

    Google Scholar 

  • Borgwardt, K.M., Gretton, A., Rasch, M.J., Kriegel, H.-P., Schölkopf, B., Smola, A.J.: Integrating structured biological data by Kernel Maximum Mean Discrepancy. Bioinformatics 22(14), e49–e57 (2006)

    Google Scholar 

  • Cortes, C., Vapnik, V.N.: Support-Vector Networks. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  • Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic Flow Kernel for Unsupervised Domain Adaptation. In: CVPR, pp. 2066–2073 (2012)

    Google Scholar 

  • Gopalan, R., Li, R., Chellapa, R.: Domain Adaptation for Object Recognition: An Unsupervised Approach. In: ICCV, pp. 999–1006 (2011)

    Google Scholar 

  • Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Improving neural networks by preventing co-adaptation of feature detectors. CoRR, abs/1207.0 (2012)

    Google Scholar 

  • Jhuo, I.-H., Liu, D., Lee, D.T., Chang, S.-F.: Robust visual domain adaptation with low-rank reconstruction. In: CVPR, pp. 2168–2175 (2012)

    Google Scholar 

  • Long, M., Ding, G., Wang, J., Sun, J., Guo, Y., Yu, P.S.: Transfer Sparse Coding for Robust Image Representation. In: CVPR, pp. 404–414 (2013)

    Google Scholar 

  • Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting Visual Category Models to New Domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  • Smola, A.J., Gretton, A., Borgwardt, K.M.: Maximum Mean Discrepancy. Technical report, NICTA-SML-06-001, National ICT Australia (2006)

    Google Scholar 

  • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. Journal of Machine Learning Research 11, 3371–3408 (2010)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ghifary, M., Kleijn, W.B., Zhang, M. (2014). Domain Adaptive Neural Networks for Object Recognition. In: Pham, DN., Park, SB. (eds) PRICAI 2014: Trends in Artificial Intelligence. PRICAI 2014. Lecture Notes in Computer Science(), vol 8862. Springer, Cham. https://doi.org/10.1007/978-3-319-13560-1_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13560-1_76

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13559-5

  • Online ISBN: 978-3-319-13560-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics