Abstract
We propose a simple neural network model to deal with the domain adaptation problem in object recognition. Our model incorporates the Maximum Mean Discrepancy (MMD) measure as a regularization in the supervised learning to reduce the distribution mismatch between the source and target domains in the latent space. From experiments, we demonstrate that the MMD regularization is an effective tool to provide good domain adaptation models on both SURF features and raw image pixels of a particular image data set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baktashmotlagh, M., Harandi, M.T., Lovell, B.C., Salzmann, M.: Unsupervised Domain Adaptation by Domain Invariant Projection. In: ICCV, pp. 769–776 (2013)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. CVIU 110(3), 346–359 (2008)
Borgwardt, K.M., Gretton, A., Rasch, M.J., Kriegel, H.-P., Schölkopf, B., Smola, A.J.: Integrating structured biological data by Kernel Maximum Mean Discrepancy. Bioinformatics 22(14), e49–e57 (2006)
Cortes, C., Vapnik, V.N.: Support-Vector Networks. Machine Learning 20(3), 273–297 (1995)
Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic Flow Kernel for Unsupervised Domain Adaptation. In: CVPR, pp. 2066–2073 (2012)
Gopalan, R., Li, R., Chellapa, R.: Domain Adaptation for Object Recognition: An Unsupervised Approach. In: ICCV, pp. 999–1006 (2011)
Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Improving neural networks by preventing co-adaptation of feature detectors. CoRR, abs/1207.0 (2012)
Jhuo, I.-H., Liu, D., Lee, D.T., Chang, S.-F.: Robust visual domain adaptation with low-rank reconstruction. In: CVPR, pp. 2168–2175 (2012)
Long, M., Ding, G., Wang, J., Sun, J., Guo, Y., Yu, P.S.: Transfer Sparse Coding for Robust Image Representation. In: CVPR, pp. 404–414 (2013)
Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting Visual Category Models to New Domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010)
Smola, A.J., Gretton, A., Borgwardt, K.M.: Maximum Mean Discrepancy. Technical report, NICTA-SML-06-001, National ICT Australia (2006)
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. Journal of Machine Learning Research 11, 3371–3408 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Ghifary, M., Kleijn, W.B., Zhang, M. (2014). Domain Adaptive Neural Networks for Object Recognition. In: Pham, DN., Park, SB. (eds) PRICAI 2014: Trends in Artificial Intelligence. PRICAI 2014. Lecture Notes in Computer Science(), vol 8862. Springer, Cham. https://doi.org/10.1007/978-3-319-13560-1_76
Download citation
DOI: https://doi.org/10.1007/978-3-319-13560-1_76
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13559-5
Online ISBN: 978-3-319-13560-1
eBook Packages: Computer ScienceComputer Science (R0)