Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Evolutionary Feature Combination Based Seed Learning for Diffusion-Based Saliency

  • Conference paper
Simulated Evolution and Learning (SEAL 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8886))

Included in the following conference series:

Abstract

Diffusion-based saliency detection is a graph-based technique in which the optimal saliency map is computed by saliency propagation over the graph using diffusion of saliency values from one node to another. This is achieved by computing the product of a propagation matrix and a saliency seed vector. The saliency seeds stored in the saliency seed vector contain important prior saliency information usually obtained from a bottom-up saliency model or certain heuristics. Finding the optimal saliency seeds is vital for efficient saliency propagation during the diffusion process. In this work, we propose to investigate the performance of an evolutionary feature combination technique for learning the optimal seeds for diffusion-based saliency detection. We achieve this by adapting an evolutionary feature combination system (having good object detection performance) for the task of seed generation, for diffusion-based saliency, termed as IGASeed. We present quantitative and qualitative comparison of our proposed IGASeed system with the state-of-the-art heuristic and learning approaches for seed prediction. Our results show that our IGASeed technique performs better than most state-of-the-art models and comparable to the best seed learning model with lower computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: IEEE CVPR, pp. 1597–1604 (2009)

    Google Scholar 

  2. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  3. Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: IEEE CVPR, pp. 1–8 (2007)

    Google Scholar 

  4. Chen, T., Cheng, M.M., Tan, P., Shamir, A., Hu, S.M.: Sketch2photo: Internet image montage. In: ACM SIGGRAPH Asia, pp. 124:1–124:10 (2009)

    Google Scholar 

  5. Cheng, M.M., Zhang, G.X., Mitra, N., Huang, X., Hu, S.M.: Global contrast based salient region detection. In: IEEE CVPR, pp. 409–416 (2011)

    Google Scholar 

  6. Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Trans. on Pattern Anal. Mach. Intell. 34(10), 1915–1926 (2012)

    Article  Google Scholar 

  7. Gopalakrishnan, V., Hu, Y., Rajan, D.: Random walks on graphs for salient object detection in images. IEEE Trans. Image Process. 19(12), 3232–3242 (2010)

    Article  MathSciNet  Google Scholar 

  8. Itti, L.: Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Trans. Image Process. 13(10), 1304–1318 (2004)

    Article  Google Scholar 

  9. Li, X., Lu, H., Zhang, L., Ruan, X., Yang, M.H.: Saliency detection via dense and sparse reconstruction. In: IEEE ICCV, pp. 2976–2983 (2013)

    Google Scholar 

  10. Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.Y.: Learning to detect a salient object. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 353–367 (2011)

    Article  Google Scholar 

  11. Lu, S., Mahadevan, V., Vasconcelos, N.: Learning optimal seeds for diffusion-based salient object detection. In: IEEE CVPR (2014)

    Google Scholar 

  12. Naqvi, S., Browne, W., Hollitt, C.: Genetic algorithms based feature combination for salient object detection, for autonomously identified image domain types. In: IEEE CEC (2014)

    Google Scholar 

  13. Rutishauser, U., Walther, D., Koch, C., Perona, P.: Is bottom-up attention useful for object recognition? In: IEEE CVPR, vol. 2, pp. II-37–II-44 (2004)

    Google Scholar 

  14. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: IEEE CVPR, pp. 3166–3173 (2013)

    Google Scholar 

  15. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schlkopf, B.: Learning with local and global consistency. In: NIPS, pp. 321–328 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Naqvi, S.S., Browne, W.N., Hollitt, C. (2014). Evolutionary Feature Combination Based Seed Learning for Diffusion-Based Saliency. In: Dick, G., et al. Simulated Evolution and Learning. SEAL 2014. Lecture Notes in Computer Science, vol 8886. Springer, Cham. https://doi.org/10.1007/978-3-319-13563-2_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13563-2_69

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13562-5

  • Online ISBN: 978-3-319-13563-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics