Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Extraction of Semantic Relations from Opinion Reviews in Spanish

  • Conference paper
Human-Inspired Computing and Its Applications (MICAI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8856))

Included in the following conference series:

Abstract

We report research on semantic relations extraction to build taxonomies. The state of the art approaches are based on text corpus or on domain texts acquisition to accurately characterize the domain of interest. We analyzed the application of unsupervised methods for ontology building using a collection of opinion reviews in Spanish and the Web. We present some results and discuss the obtained relations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aguado de Cea, G., Álvarez de Mon, I., Montiel-Ponsoda, E.: From linguistic patterns to ontology structures. In: Proceedings of the 8th International Conference on Terminology and Artificial Intelligence (2009), http://ceur-ws.org/Vol-578/paper15.pdf

  2. Barrón-Cedeño, G., Sierra, P., Drouin, S.: Ananiadou. An Improved Automatic Term Recognition Method for Spanish. Proceeding of Computational Linguistics and Intelligent Text Processing, 125–136 (2009)

    Google Scholar 

  3. Cambria, E., Poria, S., Gelbukh, A., Kwok, K.: Sentic API: A Common-Sense Based API for Concept-Level Sentiment Analysis. In: Proceedings of the 4th Workshop on Making Sense of Microposts (#Microposts2014), co-located with the 23rd International World Wide Web Conference (WWW 2014), Seoul, Korea. CEUR Workshop Proceedings, vol. 1141, pp. 19–24, CEUR-WS.org (April 7, 2014)

    Google Scholar 

  4. Cimiano, P., Pivk, A., Schmidt-Thieme, L., Staab, S.: Learning Taxonomic Relations from Heterogeneous Sources of Evidence. In: Buitelaar, P., Cimiano, P., Magnini, B. (eds.) Ontology Learning from Text: Methods, Evaluation and Applications. Frontiers in Artificial Intelligence, vol. 123, pp. 59–73. IOS Press, Amsterdam (2005a)

    Google Scholar 

  5. Cimiano, P., Hotho, A., Staab, S.: Learning Concept Hierarchies from Text Corpora using Formal Concept Analysis. J. Artif. Intell. Res. (JAIR) 24, 305–339 (2005b)

    MATH  Google Scholar 

  6. Frantzi, K., Ananiadou, S., Mima, H.: Automatic recognition of multi-word terms: the C-value/NC-value method. International Journal on Digital Libraries 3(2), 115–130 (2000)

    Article  Google Scholar 

  7. Gaizauskas, R., Demetriou, G., Humphreys, K.: Term recognition and classification in biological science journal articles. In: Proceedings of Workshop on Computational Terminology for Medical and Biological Applications, pp. 37–44 (2000)

    Google Scholar 

  8. Gelbukh, A.F., Bolshakov, I.A.: Internet, a true friend of translator: the Google wildcard operator. International Journal of Translation 18(1-2), 41–48 (2006)

    Google Scholar 

  9. Gelbukh, A., Sidorov, G.: Approach to construction of automatic morphological analysis systems for inflective languages with little effort. In: Gelbukh, A. (ed.) CICLing 2003. LNCS, vol. 2588, pp. 215–220. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Giuliano, C., Lavelli, A., Pighin, D., Romano, L.: FBK-IRST: Kernel Methods for Semantic Relation Extraction. In: Proceedings of the 4th International Workshop on Semantic Evaluations (SemEval-2007), pp. 141–144 (2007)

    Google Scholar 

  11. Hearst, M.: Automatic acquisition of hyponyms from large text corpora. In: 14th International Conference on Computational Linguistics, France, pp. 539–545 (1992)

    Google Scholar 

  12. Kilgarriff, A.: Googleology is bad science. Computational Linguistics 33, 147–151 (2007)

    Article  Google Scholar 

  13. Kim, S.N., Baldwin, T., Kan, M.-y.: An Unsupervised Approach to Domain-Specific Term Extraction. In: Proceedings of the Australasian Language Technology Association Workshop (ALTW:B), pp. 94–98 (2009)

    Google Scholar 

  14. Liu, X., Song, Y., Liu, S., Wang, H.: Automatic Taxonomy Construction from Keywords. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1433–1441 (2012)

    Google Scholar 

  15. Ortega, R., Aguilar, C., Villaseñor, L., Montes, M., Sierra, G.: Hacia la identificación de relaciones de hiponimia/hiperonimia en Internet. Revista Signos. Estudios de Lingüística 44(75), 68–84 (2011)

    Article  Google Scholar 

  16. Padró, L., Collado, M., Reese, S., Lloberes, M., Castellón, I.: FreeLing 2.1: Five Years of Open-Source Language Processing Tools. In: Proceedings of 7th Language Resources and Evaluation Conference (LREC 2010), ELRA La Valletta, Malta (2010)

    Google Scholar 

  17. Poria, S., Agarwal, B., Gelbukh, A., Hussain, A., Howard, N.: Dependency-Based Semantic Parsing for Concept-Level Text Analysis. In: Gelbukh, A. (ed.) CICLing 2014, Part I. LNCS, vol. 8403, pp. 113–127. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  18. Poria, S., Cambria, E., Winterstein, G., Huang, G.-B.: Sentic patterns: Dependency-based rules for concept-level sentiment analysis. Knowledge-Based Systems 69, 45–63 (2014)

    Article  Google Scholar 

  19. Poria, S., Ofek, N., Gelbukh, A., Hussain, A., Rokach, L.: Dependency tree-based rules for concept-level aspect-based sentiment analysis. In: Presutti, V., Stankovic, M., Cambria, E., Cantador, I., Di Iorio, A., Di Noia, T., Lange, C., Reforgiato Recupero, D., Tordai, A. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 41–47. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  20. Sánchez, D., Moreno, A.: A methodology for knowledge acquisition from the web. KES Journal 10(6), 453–475 (2006)

    Google Scholar 

  21. Shah, N., Chao, K.-M., Zlamaniec, T., Matei, A.: Ontology for Home Energy Management Domain. DICTAP (2), 337–347 (2011)

    Google Scholar 

  22. Xu, F., Kurz, D., Piskorski, J., Schmeier, S.: A Domain Adaptive Approach to Automatic Acquisition of Domain Relevant Terms and their Relations with Bootstrapping. In: Proceedings of the 3rd International Conference on Language Resources an Evaluation, LREC 2002 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Galicia-Haro, S.N., Gelbukh, A. (2014). Extraction of Semantic Relations from Opinion Reviews in Spanish. In: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds) Human-Inspired Computing and Its Applications. MICAI 2014. Lecture Notes in Computer Science(), vol 8856. Springer, Cham. https://doi.org/10.1007/978-3-319-13647-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13647-9_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13646-2

  • Online ISBN: 978-3-319-13647-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics