Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Monocular Visual Odometry Based Navigation for a Differential Mobile Robot with Android OS

  • Conference paper
Human-Inspired Computing and Its Applications (MICAI 2014)

Abstract

In this work, a real time Monocular Visual Odometry system to estimate camera position and orientation based solely on image measurements is proposed. The system is built on the basis of the fundamentals of Structure from Motion theory, and requires only a single camera to estimate positional information. Experiments were conducted on flat ground, under controlled light conditions environment, in which and an Android mobile device camera was employed as the processor and the system sensor due to ease of acquisition and low price. The proposed system resulted in absolute navigation error rates ranging from 0.14% to 0.4% of the travelled distance at processing rates of up to 5Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Scaramuzza, D., Fraundorfer, F.: Visual odometry, part i: The first 30 years and fundamentals. IEEE Robotics and Automation, 80–91 (2011)

    Google Scholar 

  2. Nister, D., Naroditsky, O., Bergen, J.: Visual odometry. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2004)

    Google Scholar 

  3. Longuet-Higgins, H.: A computer algorithm for reconstructing a scene from two projections. Nature 293(10), 133–135 (1981)

    Article  Google Scholar 

  4. Harris, C., Pike, J.: 3d positional integration from image sequences. In: Proc. Alvey Vision Conf., pp. 87–90 (1988)

    Google Scholar 

  5. Frahm, J.M., Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen, Y.H., Dunn, E., Clipp, B., Lazebnik, S., Pollefeys, M.: Building rome on a cloudless day. In: Conf. Computer Vision, pp. 368–381 (2010)

    Google Scholar 

  6. Moravec, H.: Obstacle avoidance and navigation in the real world by a seeing robot rover. PhD thesis, Stanford University (1980)

    Google Scholar 

  7. Matthies, L., Shafer, S.: Error modeling in stereo navigation. IEEE J. Robot. Automat. 3(3), 239–248 (1987)

    Article  Google Scholar 

  8. Fraundorfer, F., Scaramuzza, D.: Visual odometry, part ii: Matching, robustness, optimization, and applications. IEEE Robotics and Automation, 78–90 (2012)

    Google Scholar 

  9. Nister, D.: An efficient solution to the five point relative pose problem. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(6), 756–777 (2004)

    Article  Google Scholar 

  10. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Artificial Intelligence Center, SRI International (1981)

    Google Scholar 

  11. Davison, A.J.: Real time simultaneous localisation and mapping with a single camera. In: IEEE International Conference on Computer Vision (2003)

    Google Scholar 

  12. Lategahn, H., Geiger, A., Kitt, B.: Visual slam for autonomous ground vehicles. In: IEEE International Conference on Robotics and Automation (2011)

    Google Scholar 

  13. Campbell, J., Sukthankar, R., Nourbakhsh, I.R., Pahwa, A.: A robust visual odometry and precipice detection system using consumer grade monocular vision. In: IEEE International Conference on Robotics and Automation (2005)

    Google Scholar 

  14. Scaramuzza, D., Fraundorfer, F., Siegwart, R.: Real time monocular visual odometry for on road vehicles with 1 point ransac. In: IEEE International Conference on Robotics and Automation (2009)

    Google Scholar 

  15. Howard, A.: Real time stereo visual odometry for autonomous ground vehicles. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2008)

    Google Scholar 

  16. Tardif, J.P., Pavlidis, Y., Daniilidis, K.: Monocular visual odometry in urban environments using an omnidirectional camera. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2008)

    Google Scholar 

  17. Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., Sayd, P.: Real time localization and 3d reconstruction. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2006)

    Google Scholar 

  18. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. 2nd edn. Cambridge U.K. (2004)

    Google Scholar 

  19. Nister, D., Naroditsky, O., Bergen, J.: Visual odometry for ground vehicle applications. J. Field Robot 23, 3–20 (2006)

    Article  MATH  Google Scholar 

  20. Scaramuzza, D., Siegwart, R.: Appearance guided monocular omnidirectional visual odometry for outdoor ground vehicles. IEEE Trans. Robot. (Special Issue on Visual SLAM) 24(5), 1015–1026 (2008)

    Article  Google Scholar 

  21. Ma, Y., Soatto, S., Kosecka, J., Sastry, S.: An invitation to 3d vision from images to models. Springer (2003)

    Google Scholar 

  22. Moreno-Noguer, F., Lepetit, V., Fua, P.: Accurate non-iterative o(n) solution to the pnp problem. In: IEEE International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Villanueva-Escudero, C., Villegas-Cortez, J., Zúñiga-López, A., Avilés-Cruz, C. (2014). Monocular Visual Odometry Based Navigation for a Differential Mobile Robot with Android OS. In: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds) Human-Inspired Computing and Its Applications. MICAI 2014. Lecture Notes in Computer Science(), vol 8856. Springer, Cham. https://doi.org/10.1007/978-3-319-13647-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13647-9_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13646-2

  • Online ISBN: 978-3-319-13647-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics