Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Real-Time Single Camera Hand Gesture Recognition System for Remote Deaf-Blind Communication

  • Conference paper
  • First Online:
Augmented and Virtual Reality (AVR 2014)

Abstract

This paper presents a fast approach for marker-less Full-DOF hand tracking, leveraging only depth information from a single depth camera. This system can be useful in many applications, ranging from tele-presence to remote control of robotic actuators or interaction with 3D virtual environment. We applied the proposed technology to enable remote transmission of signs from Tactile Sing Languages (i.e., Sign Languages with Tactile feedbacks), allowing non-invasive remote communication not only among deaf-blind users, but also with deaf, blind and hearing with proficiency in Sign Languages. We show that our approach paves the way to a fluid and natural remote communication for deaf-blind people, up to now impossible. This system is a first prototype for the PARLOMA project, which aims at designing a remote communication system for deaf-blind people.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Openni. http://www.openni.org/

  2. Prensilia s.r.l., datasheet eh1 milano series (2010). http://www.prensilia.com/index.php?q=en/node/41

  3. Abbou, C.C., Hoznek, A., Salomon, L., Olsson, L.E., Lobontiu, A., Saint, F., Cicco, A., Antiphon, P., Chopin, D.: Laparoscopic radical prostatectomy with a remote controlled robot. The Journal of Urology 165(6), 1964–1966 (2001)

    Article  Google Scholar 

  4. Athitsos, V., Sclaroff, S.: Estimating 3d hand pose from a cluttered image. In: Proceedings of 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, p. II-432. IEEE (2003)

    Google Scholar 

  5. Bray, M., Koller-Meier, E., Van Gool, L.: Smart particle filtering for 3d hand tracking. In: Proceedings of Sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 675–680. IEEE (2004)

    Google Scholar 

  6. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  7. Breuer, P., Eckes, C., Müller, S.: Hand gesture recognition with a novel ir time-of-flight range camera–a pilot study. In: Gagalowicz, A., Philips, W. (eds.) MIRAGE 2007. LNCS, vol. 4418, pp. 247–260. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)

    Article  Google Scholar 

  9. Controzzi, M., Cipriani, C., Carrozza, M.C.: Design of artificial hands: A review. The Human Hand as an Inspiration for Robot Hand Development. STAR, vol. 95, pp. 219–246. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  10. Erol, A., Bebis, G., Nicolescu, M., Boyle, R.D., Twombly, X.: Vision-based hand pose estimation: A review. Computer Vision and Image Understanding 108(1), 52–73 (2007)

    Article  Google Scholar 

  11. Frankel, S., Glenn, R., Kelly, S.: The aes-cbc cipher algorithm and its use with ipsec. RFC3602 (2003)

    Google Scholar 

  12. Gavrila, D.M., Davis, L.S.: 3-d model-based tracking of humans in action: A multi-view approach. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1996, pp. 73–80. IEEE (1996)

    Google Scholar 

  13. Goncalves, L., Di Bernardo, E., Ursella, E., Perona, P.: Monocular tracking of the human arm in 3d. In: Proceedings of Fifth International Conference on Computer Vision, pp. 764–770. IEEE (1995)

    Google Scholar 

  14. Grebenstein, M.: The awiwi hand: An artificial hand for the DLR hand arm system. In: Grebenstein, M. (ed.) Approaching Human Performance. STAR, vol. 98, pp. 67–136. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  15. Han, J., Shao, L., Xu, D., Shotton, J.: Enhanced computer vision with microsoft kinect sensor: A review (2013)

    Google Scholar 

  16. Keskin, C., Kıraç, F., Kara, Y.E., Akarun, L.: Real time hand pose estimation using depth sensors. In: Consumer Depth Cameras for Computer Vision, pp. 119–137. Springer (2013)

    Google Scholar 

  17. Kuznetsova, A., Leal-Taixe, L., Rosenhahn, B.: Real-time sign language recognition using a consumer depth camera. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 83–90 (2013)

    Google Scholar 

  18. Lorussi, F., Scilingo, E.P., Tesconi, M., Tognetti, A., De Rossi, D.: Strain sensing fabric for hand posture and gesture monitoring. IEEE Transactions on Information Technology in Biomedicine 9(3), 372–381 (2005)

    Article  Google Scholar 

  19. Mesch, J.: Signed conversations of deafblind people

    Google Scholar 

  20. Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Efficient model-based 3d tracking of hand articulations using kinect. In: BMVC, pp. 1–11 (2011)

    Google Scholar 

  21. Raspopovic, S., Capogrosso, M., Petrini, F.M., Bonizzato, M., Rigosa, J., Di Pino, G., Carpaneto, J., Controzzi, M., Boretius, T., Fernandez, E., Granata, G., Oddo, C.M., Citi, L., Ciancio, A.L., Cipriani, C., Carrozza, M.C., Jensen, W., Guglielmelli, E., Stieglitz, T., Rossini, P.M., Micera, S.: Restoring natural sensory feedback in real-time bidirectional hand prostheses. Science Translational Medicine 6(222), 222ra19 (2014)

    Google Scholar 

  22. Rehg, J.M., Kanade, T.: Digiteyes: Vision-based hand tracking for human-computer interaction. In: Proceedings of the 1994 IEEE Workshop on Motion of Non-Rigid and Articulated Objects, pp. 16–22. IEEE (1994)

    Google Scholar 

  23. Rodriguez-Galiano, V., Ghimire, B., Rogan, J., Chica-Olmo, M., Rigol-Sanchez, J.: An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing 67, 93–104 (2012)

    Article  Google Scholar 

  24. Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A., Cook, M., Moore, R.: Real-time human pose recognition in parts from single depth images. Communications of the ACM 56(1), 116–124 (2013)

    Article  Google Scholar 

  25. Stenger, B., Thayananthan, A., Torr, P.H., Cipolla, R.: Model-based hand tracking using a hierarchical bayesian filter. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(9), 1372–1384 (2006)

    Article  Google Scholar 

  26. Walkler, R.: Developments in dextrous hands for advanced robotic applications. In: Proc. the Sixth Biannual World Automation Congress, Seville, Spain. pp. 123–128 (2004)

    Google Scholar 

  27. Wang, R., Paris, S., Popović, J.: 6d hands: markerless hand-tracking for computer aided design. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, pp. 549–558. ACM (2011)

    Google Scholar 

  28. Wang, R.Y., Popović, J.: Real-time hand-tracking with a color glove. ACM Transactions on Graphics (TOG) 28, 63 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Airò Farulla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Airò Farulla, G. et al. (2014). Real-Time Single Camera Hand Gesture Recognition System for Remote Deaf-Blind Communication. In: De Paolis, L., Mongelli, A. (eds) Augmented and Virtual Reality. AVR 2014. Lecture Notes in Computer Science(), vol 8853. Springer, Cham. https://doi.org/10.1007/978-3-319-13969-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13969-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13968-5

  • Online ISBN: 978-3-319-13969-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics