Abstract
Brain tumor segmentation and labeling is a challenging task in medical imaging. In this paper, a novel patch based dictionary learning algorithm for automatic multi-label brain tumor segmentation is proposed. Based on image reconstruction, we present coupled dictionaries, one dictionary of grayscale brain tumor image patches and one dictionary of tumor labels, which can then be used for automatic multi-label brain tumor segmentation of a test image data. The dictionaries are learned from training images of BraTS-MICCAI and the SPL/NSG brain tumor databases. The label dictionary is proposed to select foreground and background labels for automatic graph-cut segmentation. For quantitative evaluation, five different metric scores are computed using the online evaluation tool provided by the BraTS organizers. Experimental results demonstrate that the proposed approach achieves accurate results and outperforms most of the state-of-the-art methods cited in BraTS-MICCAI challenge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sachdeva, J., Kumar, V., Gupta, I., Khandelwal, N., Ahuja, C.K.: Segmentation, Feature Extraction, Multiclass Brain Tumor Classification. Journal of Digital Imaging 26, 1141–1150 (2013)
Jiang, S., Wu, Y., Huang, M., Yang, W., Chen, W., Feng, Q.: 3D brain tumor segmentation in multimodal MR images based on learning population- and patient-specific feature sets. CMIG 37(7), 512–521 (2013)
Moon, N., Bullitt, E., Van Leemput, K., Gerig, G.: Automatic Brain and Tumor Segmentation. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002, Part I. LNCS, vol. 2488, pp. 372–379. Springer, Heidelberg (2002)
Gooya, A., Pohl, K.M., Bilello, M., Cirillo, L., Biros, G., Melhem, E.R., Davatzikos, C.: GLISTR: Glioma Image Segmentation and Registration. IEEE Trans. Med. Imag. 31(10), 1941–1954 (2012)
Weiss, N., Rueckert, D., Rao, A.: Multiple Sclerosis Lesion Segmentation Using Dictionary Learning and Sparse Coding. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 735–742. Springer, Heidelberg (2013)
Gooya, A., Pohl, K.M., Bilello, M., Biros, G., Davatzikos, C.: Joint Segmentation and Deformable Registration of Brain Scans Guided by a Tumor Growth Model. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 532–540. Springer, Heidelberg (2011)
Cao, T., Jojic, V., Modla, S., Powell, D., Czymmek, K., Niethammer, M.: Robust multimodal dictionary learning. MICCAI 16(1), 259–266 (2013)
Reza, S., Iftekharuddin, K.M.: Multi-class Abnormal Brain Tissue Segmentation Using Texture Features. In: Proceedings of BraTS-MICCAI, pp. 38–42 (2013)
Tustison, N., Wintermark, M., Durst, C., Avants, B.: ANTs and Arboles. In: Proceedings of BraTS-MICCAI, pp. 47–50 (2013)
Zhao, L., Sarikaya, D., Corso, J.J.: Automatic Brain Tumor Segmentation with MRF on Supervoxels. In: Proceedings of BraTS-MICCAI, pp. 51–54 (2013)
Festa, J., Pereira, S., Mariz, J.A., Sousa, N., Silva, C.A.: Automatic Brain Tumor Segmentation of Multi-Sequence MR Images Using Random Decision Forests. In: Proceedings of BraTS-MICCAI, pp. 23–26 (2013)
Thiagarajan, J.J., Ramamurthy, K.N., Rajan, D., Spanias, A.: Kernel Sparse Models for Automatic Tumor Segmentation. IJAIT 12, 1–12 (2013)
Zhao, L., Wu, W., Corso, J.J.: Semi-Automatic Brain Tumor Segmentation By Constrained MRFs using Structural Trajectories. MICCAI 16(pt 3), 567–575 (2013)
Warfield, S.K., Kaus, M., Jolesz, F.A., Kikinis, R.: Adaptive, Template Moderated, Spatially Varying Statistical Classification. Med. Image Anal. 4(1), 43–55 (2000)
Cordier, N., Menze, B., Delingette, H., Ayache, N.: Patch-based Segmentation of Brain Tissues. In: Proceedings of BraTS-MICCAI, pp. 6–17 (2013)
Meier, R., Bauer, S., Slotboom, J., Wiest, R., Reyes, M.: A Hybrid Model for Multimodal Brain Tumor Segmentation. In: Proceedings of BraTS-MICCAI, pp. 31–37 (2013)
Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)
Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast Approximate Energy Minimization with Label Costs. In: CVPR, pp. 2173–2180 (2010)
Kaus, M., Warfield, S.K., Nabavi, A., Black, P.M., Jolesz, F.A., Kikinis, R.: Automated Segmentation of MRI of Brain Tumors. Radiology 218(2), 586–591 (2001)
Brain Tumor Database (BraTS-MICCAI), http://hal.inria.fr/hal-00935640
BraTS-MICCAI Website, http://martinos.org/qtim/miccai2013/results.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Al-Shaikhli, S.D.S., Yang, M.Y., Rosenhahn, B. (2014). Coupled Dictionary Learning for Automatic Multi-Label Brain Tumor Segmentation in Flair MRI images. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2014. Lecture Notes in Computer Science, vol 8887. Springer, Cham. https://doi.org/10.1007/978-3-319-14249-4_46
Download citation
DOI: https://doi.org/10.1007/978-3-319-14249-4_46
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-14248-7
Online ISBN: 978-3-319-14249-4
eBook Packages: Computer ScienceComputer Science (R0)