Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Semantic Correlation Mining between Images and Texts with Global Semantics and Local Mapping

  • Conference paper
MultiMedia Modeling (MMM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8936))

Included in the following conference series:

Abstract

This paper proposes a novel approach for the modeling of semantic correlation between web images and texts. Our approach contains two processes of semantic correlation computing. One is to find the local media objects (LMOs), the components composing text (or image) documents, that match the global semantics of a given image(or text) document based on probabilistic latent semantic analysis (PLSA); The other is to make a direct mapping among LMOs with graph-based learning, with those LMOs achieved based on PLSA as a part of inputs. The two cooperating processes consider both dominant semantics and local subordinate parts of heterogeneous data. Finally, we compute the similarity between the obtained LMOs and a whole document of the same modality and then get the semantic correlation between textual and visual documents. Experimental results demonstrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wu, X., Qiao, Y., Wang, X., Tang, X.: Cross matching of music and image. In: ACM International Conference on Multimedia, pp. 837–840 (2012)

    Google Scholar 

  2. Jeon, J., Lavrenko, V., Manmatha, R.: Automatic image annotation and retrieval using cross-media relevance models. In: Annual ACM SIGIR Conference, pp. 119–126 (2003)

    Google Scholar 

  3. Wu, L., Jin, R., Jain, A.K.: Tag Completion for Image Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 716–727 (2013)

    Article  Google Scholar 

  4. Wang, M., Ni, B., Hua, X., Chua, T.: Assistive tagging: a survey of multimedia tagging with human-computer joint exploration. ACM Computing Surveys 44, 25–25 (2012)

    Article  Google Scholar 

  5. Rasiwasia, N., Perieira, J.C., Cobiello, E., Doyle, G., Lanckriet, G.R.G., Levy, R., Vasconcelos, N.: A new approach to cross-modal multimedia retrieval. In: MMM, pp. 251–260 (2010)

    Google Scholar 

  6. Zhuang, Y., Yang, Y., Wu, F.: Mining semantic correlation of heterogeneous multimedia data for cross-media retrieval. IEEE Transaction on Multimedia 10, 221–229 (2008)

    Article  Google Scholar 

  7. Jiang, T., Tan, A.: Learning image-text associations. IEEE Transactions on Knowledge and Data Engineering 21, 161–177 (2009)

    Article  Google Scholar 

  8. Monay, F., Perez, D.G.: Modeling semantic aspects for cross-media image indexing. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 1802–1817 (2007)

    Article  Google Scholar 

  9. Zhou, Y., Liang, M., Du, J.: Study of cross-media topic analysis based on visual topic model. In: 24th Chinese Control and Decision Conference, pp. 3467–3470 (2012)

    Google Scholar 

  10. Zhai, X., Peng, Y., Xiao, J.: Effective heterogeneous similarity measure with nearest neighbors for cross-media retrieval. In: Schoeffmann, K., Merialdo, B., Hauptmann, A.G., Ngo, C.-W., Andreopoulos, Y., Breiteneder, C. (eds.) MMM 2012. LNCS, vol. 7131, pp. 312–322. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Scholkopf, B.: Learning with local and global consistency. In: NIPS, pp. 237–244 (2003)

    Google Scholar 

  12. Vapnik, V.: Local learning algorithms. Neural Computation 4, 888–900 (1992)

    Article  Google Scholar 

  13. Gao, Y., Wang, M., Zha, Z., Shen, J., Li, X., Wu, X.: Visual-textual joint relevance learning for tag-based social image search. IEEE Transactions on Image Processing 22 (2013)

    Google Scholar 

  14. Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Machine Learning 42, 177–196 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Xue, J., Du, Y., Shui, H. (2015). Semantic Correlation Mining between Images and Texts with Global Semantics and Local Mapping. In: He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A. (eds) MultiMedia Modeling. MMM 2015. Lecture Notes in Computer Science, vol 8936. Springer, Cham. https://doi.org/10.1007/978-3-319-14442-9_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14442-9_48

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14441-2

  • Online ISBN: 978-3-319-14442-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics