Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Structure and Measure of a Decidable Class of Two-dimensional Codes

  • Conference paper
  • First Online:
Language and Automata Theory and Applications (LATA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8977))

Abstract

A two-dimensional code is defined as a set \(X\subseteq \Sigma ^{**}\) such that any picture over \(\Sigma \) is tilable in at most one way with pictures in \(X\). It is in general undecidable whether a set \(X\) of pictures is a code also in the finite case. Very recently in [3] strong prefix picture codes were defined as a decidable subclass that generalizes prefix string codes. Here a characterization for strong prefix codes that results in an effective procedure to construct them is presented. As a consequence there are also proved interesting results on the measure of strong prefix codes and a connection with the family of string prefix codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aigrain, P., Beauquier, D.: Polyomino tilings, cellular automata and codicity. Theoretical Computer Science 147, 165–180 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anselmo, M., Giammarresi, D., Madonia, M.: Deterministic and unambiguous families within recognizable two-dimensional languages. Fund. Inform 98(2–3), 143–166 (2010)

    MATH  MathSciNet  Google Scholar 

  3. Anselmo, M., Giammarresi, D., Madonia, M.: Strong Prefix Codes of Pictures. In: Muntean, T., Poulakis, D., Rolland, R. (eds.) CAI 2013. LNCS, vol. 8080, pp. 47–59. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Anselmo, M., Giammarresi, D., Madonia, M.: Two Dimensional Prefix Codes of Pictures. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 46–57. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Anselmo, M., Giammarresi, D., Madonia, M.: Prefix picture codes: a decidable class of two-dimensional codes. Int. Jou. of Foundations of Computer Science (to appear, 2015)

    Google Scholar 

  6. Anselmo, M., Giammarresi, D., Madonia, M., Restivo, A.: Unambiguous recognizable two-dimensional languages. RAIRO -ITA 40(2), 227–294 (2006)

    MathSciNet  Google Scholar 

  7. Anselmo, M., Madonia, M.: Deterministic and unambiguous two-dimensional languages over one-letter alphabet. Theoretical Computer Science 410(16), 1477–1485 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Anselmo, M., Jonoska, N., Madonia, M.: Framed Versus Unframed Two-Dimensional Languages. In: Nielsen, M., Kučera, A., Miltersen, P.B., Palamidessi, C., T\r{u}ma, P., Valencia, F. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 79–92. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Beauquier, D., Nivat, M.: A codicity undecidable problem in the plane. Theoret. Comp. Sci. 303, 417–430 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University Press (2009)

    Google Scholar 

  11. Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: SWAT (FOCS). pp. 155–160 (1967)

    Google Scholar 

  12. Bozapalidis, S., Grammatikopoulou, A.: Picture codes. RAIRO - ITA 40(4), 537–550 (2006)

    MATH  MathSciNet  Google Scholar 

  13. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., (ed.) Handbook of Formal Languages, Vol. III, pp. 215–268. Springer (1997)

    Google Scholar 

  14. Kari, J., Salo, V.: A Survey on Picture-Walking Automata. In: Kuich, W., Rahonis, G. (eds.) Algebraic Foundations in Computer Science. LNCS, vol. 7020, pp. 183–213. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Kolarz, M., Moczurad, W.: Multiset, Set and Numerically Decipherable Codes over Directed Figures. In: Smyth, B. (ed.) IWOCA 2012. LNCS, vol. 7643, pp. 224–235. Springer, Heidelberg (2012)

    Google Scholar 

  16. Mauceri, S., Restivo, A.: A family of codes commutatively equivalent to prefix codes. Inf. Process. Lett. 12(1), 1–4 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  17. Otto, F., Mráz, F.: Extended Two-Way Ordered Restarting Automata for Picture Languages. In: Dediu, A.-H., Mart\’ın-Vide, C., Sierra-Rodr\’ıguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 541–552. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  18. Pradella, M., Cherubini, A., Crespi-Reghizzi, S.: A unifying approach to picture grammars. Inf. Comput. 209(9), 1246–1267 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pr\r{u}ša, D., Mráz, F., Otto, F.: New Results on Deterministic Sgraffito Automata. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 409–419. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Simplot, D.: A characterization of recognizable picture languages by tilings by finite sets. Theoretical Computer Science 218(2), 297–323 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Madonia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Anselmo, M., Giammarresi, D., Madonia, M. (2015). Structure and Measure of a Decidable Class of Two-dimensional Codes. In: Dediu, AH., Formenti, E., Martín-Vide, C., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2015. Lecture Notes in Computer Science(), vol 8977. Springer, Cham. https://doi.org/10.1007/978-3-319-15579-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15579-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15578-4

  • Online ISBN: 978-3-319-15579-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics