Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Interactive Tweaking of Text Analytics Dashboards

  • Conference paper
Databases in Networked Information Systems (DNIS 2015)

Abstract

With the increasing importance of text analytics in all disciplines, e.g., science, business, and social media analytics, it has become important to extract actionable insights from text in a timely manner. Insights from text analytics are conventionally presented as visualizations and dashboards to the analyst. While these insights are intended to be set up as a one-time task and observed in a passive manner, most use cases in the real world require constant tweaking of these dashboards in order to adapt to new data analysis settings. Current systems supporting such analysis have grown from simplistic chains of aggregations to complex pipelines with a range of implicit (or latent) and explicit parametric knobs. The re-execution of such pipelines can be computationally expensive, and the increased query-response time at each step may significantly delay the analysis task. Enabling the analyst to interactively tweak and explore the space allows the analyst to get a better hold on the data and insights. We propose a novel interactive framework that allows social media analysts to tweak the text mining dashboards not just during its development stage, but also during the analytics process itself. Our framework leverages opportunities unique to text pipelines to ensure fast response times, allowing for a smooth, rich and usable exploration of an entire analytics space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, C.C.: An Introduction to Social Network Data Analytics. Springer (2011)

    Google Scholar 

  2. Alexe, B., Hernandez, M.A., Hildrum, K.W., Krishnamurthy, R., Koutrika, G., Nagarajan, M., Roitman, H., Shmueli-Scheuer, M., Stanoi, I.R., Venkatramani, C., Wagle, R.: Surfacing Time-critical Insights from Social Media. In: SIGMOD (2012)

    Google Scholar 

  3. Asur, S., Huberman, B.A.: Predicting the Future with Social Media. In: WI-IAT (2010)

    Google Scholar 

  4. Deng, K., Moore, A.W.: Multiresolution Instance-based Learning. In: IJCAI (1995)

    Google Scholar 

  5. Domingos, P., Pazzani, M.: On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. In: Machine Learning (1997)

    Google Scholar 

  6. Fisher, D.H.: Knowledge Acquisition via Incremental Conceptual Clustering. In: Machine Learning (1987)

    Google Scholar 

  7. Gama, J.: A Cost-sensitive Iterative bayes. In: ICML (2000)

    Google Scholar 

  8. Gama, J., Castillo, G.: Adaptive Bayes. In: Advances in AI BERAMIA (2002)

    Google Scholar 

  9. Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S., Pietarinen, L., Srivastava, D.: Using q-grams in a DBMS for Approximate String Processing. In: TCDE (2001)

    Google Scholar 

  10. Gupta, H., Mumick, I.S.: Selection of Views to Materialize in a Data Warehouse. In: TKDE (2005)

    Google Scholar 

  11. Halevy, A.Y.: Answering Queries Using Views: A Survey. In: VLDB (2001)

    Google Scholar 

  12. Infosphere Biginsights, I. (2011), http://www.ibm.com

  13. Facebook Inc. 1.35 Billion Monthly Active Users as of. Company Information (September 30, 2014)

    Google Scholar 

  14. Indyk, P., Motwani, R.: Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality. In: STOC (1998)

    Google Scholar 

  15. International Telecommunication Union: United Nations Special Agency. The World in 2014. ICT Facts and Figures (2014)

    Google Scholar 

  16. Ivanova, M.G., Kersten, M.L., Nes, N.J.: An Architecture for Recycling Intermediates in a Column-store. In: TODS (2010)

    Google Scholar 

  17. Jadhav, A.S., Purohit, H., Kapanipathi, P., Anantharam, P., Ranabahu, A.H., Nguyen, V., Mendes, P.N., Smith, A.G., Cooney, M., Sheth, A.: Twitris 2.0: Semantically Empowered System for Understanding Perceptions from Social Data. In: ISWC (2010)

    Google Scholar 

  18. Koudas, N., Marathe, A., Srivastava, D.: Flexible String Matching Against Large Databases in Practice. In: VLDB (2004)

    Google Scholar 

  19. Lewis, D.D.: Naive (Bayes) at Forty: The Independence Assumption in Information Retrieval. Springer, 1998

    Google Scholar 

  20. Liu, Z., Heer, J.: The effects of interactive latency on exploratory visual analysis. IEEE Trans. Visualization & Comp. Graphics, Proc. InfoVis (2014)

    Google Scholar 

  21. Mami, I., Bellahsene, Z.: A Survey of View Selection Methods. In: SIGMOD (2012)

    Google Scholar 

  22. Marcus, A., Bernstein, M.S., Badar, O., Karger, D.R., Madden, S., Miller, R.C.: Tweets as Data: Demonstration of TweeQL and Twitinfo. In: SIGMOD (2011)

    Google Scholar 

  23. McCallum, A., Nigam, K.: A Comparison of Event Models for naive bayes Text Classification. AAAI-LTC (1998)

    Google Scholar 

  24. Miller, R.B.: Response time in man-computer conversational transactions. In: Proceedings of the, Fall Joint Computer Conference, Part I, December 9-11, pp. 267–277. ACM (1968)

    Google Scholar 

  25. Moore, A., Lee, M.S.: Cached Sufficient Statistics for Efficient Machine Learning with Large Datasets. JAIR (1998)

    Google Scholar 

  26. Murphy, K.P.: Naive Bayes Classifiers. Springer (2006)

    Google Scholar 

  27. Olston, C., Bortnikov, E., Elmeleegy, K., Junqueira, F., Reed, B.: Interactive Analysis of Web-scale Data. In: CIDR (2009)

    Google Scholar 

  28. Park, C.-S., Kim, M.H., Lee, Y.-J.: Finding an Efficient Rewriting of OLAP Queries Using Materialized Views in Data Warehouses. In: DSS (2002)

    Google Scholar 

  29. Reips, U., Garaizar, P.: Mining Twitter: A Source for Psychological Wisdom of the Crowds. Behavior Research Methods (2011)

    Google Scholar 

  30. Rish, I.: An Empirical Study of the Naive bayes Classifier. IJCAI (2001)

    Google Scholar 

  31. Ross, K.A., Srivastava, D., Sudarshan., S.: Materialized View Maintenance and Integrity Constraint checking: Trading Space for Time. In: SIGMOD (1996)

    Google Scholar 

  32. Roy, P., Seshadri, S., Sudarshan, S., Bhobe, S.: Efficient and Extensible Algorithms for Multi Query Optimization. In: SIGMOD (2000)

    Google Scholar 

  33. Sankaranarayanan, J., Samet, H., Teitler, B.E., Lieberman, M.D., Sperling, J.: Twitterstand: News in Tweets. SIGSPATIAL GIS (2009)

    Google Scholar 

  34. Shneiderman, B.: Response time and display rate in human performance with computers. ACM Computing Surveys (CSUR) 16(3), 265–285 (1984)

    Article  Google Scholar 

  35. Twitter Inc. Twitter Usage: 500 million Tweets are sent per day. Company Information (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Nandi, A. et al. (2015). Interactive Tweaking of Text Analytics Dashboards. In: Chu, W., Kikuchi, S., Bhalla, S. (eds) Databases in Networked Information Systems. DNIS 2015. Lecture Notes in Computer Science, vol 8999. Springer, Cham. https://doi.org/10.1007/978-3-319-16313-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16313-0_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16312-3

  • Online ISBN: 978-3-319-16313-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics