Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-cue Mid-level Grouping

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9005))

Included in the following conference series:

  • 2610 Accesses

Abstract

Region proposal methods provide richer object hypotheses than sliding windows with dramatically fewer proposals, yet they still number in the thousands. This large quantity of proposals typically results from a diversification step that propagates bottom-up ambiguity in the form of proposals to the next processing stage. In this paper, we take a complementary approach in which mid-level knowledge is used to resolve bottom-up ambiguity at an earlier stage to allow a further reduction in the number of proposals. We present a method for generating regions using the mid-level grouping cues of closure and symmetry. In doing so, we combine mid-level cues that are typically used only in isolation, and leverage them to produce fewer but higher quality proposals. We emphasize that our model is mid-level by learning it on a limited number of objects while applying it to different objects, thus demonstrating that it is transferable to other objects. In our quantitative evaluation, we (1) establish the usefulness of each grouping cue by demonstrating incremental improvement, and (2) demonstrate improvement on two leading region proposal methods with a limited budget of proposals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carreira, J., Sminchisescu, C.: Cpmc: Automatic object segmentation using constrained parametric min-cuts. PAMI 34, 1312–1328 (2012)

    Article  Google Scholar 

  2. Uijlings, J., van de Sande, K., Gevers, T., Smeulders, A.: Selective search for object recognition. IJCV 104, 154–171 (2013)

    Article  Google Scholar 

  3. Fidler, S., Mottaghi, R., Yuille, A., Urtasun, R.: Bottom-up segmentation for top-down detection. In: CVPR, pp. 3294–3301 (2013)

    Google Scholar 

  4. Fidler, S., Boben, M., Leonardis, A.: Learning a hierarchical compositional shape vocabulary for multi-class object representation. ArXiv:1408.5516 (2014)

  5. Elder, J., Zucker, S.: Computing contour closure. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 399–412. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  6. Jacobs, D.: Robust and efficient detection of convex groups. PAMI 18(1), 23–37 (1996)

    Article  Google Scholar 

  7. Loy, G., Eklundh, J.-O.: Detecting symmetry and symmetric constellations of features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 508–521. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Mohan, R., Nevatia, R.: Perceptual organization for scene segmentation and description. PAMI 14, 616–635 (1992)

    Article  Google Scholar 

  9. Tsogkas, S., Kokkinos, I.: Learning-based symmetry detection in natural images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 41–54. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Blum, H.: A transformation for extracting new descriptors of shape. In: Wathen-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967)

    Google Scholar 

  11. Binford, T.: Visual perception by computer. In: ICSC (1971)

    Google Scholar 

  12. Pentland, A.: Perceptual organization and the representation of natural form. AI 28, 293–331 (1986)

    MathSciNet  Google Scholar 

  13. Biederman, I.: Human image understanding: Recent research and a theory. In: CVGIP (1985)

    Google Scholar 

  14. Borenstein, E., Ullman, S.: Class-specific, top-down segmentation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part II. LNCS, vol. 2351, pp. 109–122. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: CVPR (2007)

    Google Scholar 

  16. Alexe, B., Deselaers, T., Ferrari, V.: What is an object? In: CVPR, pp. 73–80 (2010)

    Google Scholar 

  17. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. IJCV 59, 167–181 (2004)

    Article  Google Scholar 

  18. Arbeláez, P., Pont-Tuset, J., Barron, J., Marques, F., Malik, J.: Multiscale combinatorial grouping. In: CVPR (2014)

    Google Scholar 

  19. Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. PAMI 33, 898–916 (2011)

    Article  Google Scholar 

  20. Kim, J., Grauman, K.: Boundary preserving dense local regions. In: CVPR (2011)

    Google Scholar 

  21. Endres, I., Hoiem, D.: Category independent object proposals. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 575–588. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Zhu, S., Yuille, A.: Region competition: Unifying snakes, region growing, and bayes/mdl for multiband image segmentation. PAMI 18, 884–900 (1996)

    Article  Google Scholar 

  23. Shi, J., Malik, J.: Normalized cuts and image segmentation. PAMI 22, 888–905 (2000)

    Article  Google Scholar 

  24. Leung, T., Malik, J.: Contour continuity in region based image segmentation. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 544–559. Springer, Heidelberg (1998)

    Google Scholar 

  25. Ren, X., Fowlkes, C., Malik, J.: Cue integration for figure/ground labeling. In: NIPS (2005)

    Google Scholar 

  26. Levinshtein, A., Sminchisescu, C., Dickinson, S.J.: Optimal image and video closure by superpixel grouping. IJCV 100, 99–119 (2012)

    Article  Google Scholar 

  27. Lee, T., Fidler, S., Dickinson, S.: Detecting curved symmetric parts using a deformable disc model. In: ICCV (2013)

    Google Scholar 

  28. Kolmogorov, V., Boykov, Y., Rother, C.: Applications of parametric maxflow in computer vision. In: ICCV, vol. 8 (2007)

    Google Scholar 

  29. Schwing, A., Fidler, S., Pollefeys, M., Urtasun, R.: Box in the box: Joint 3d layout and object reasoning from single images. In: ICCV (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lee, T., Fidler, S., Dickinson, S. (2015). Multi-cue Mid-level Grouping. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9005. Springer, Cham. https://doi.org/10.1007/978-3-319-16811-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16811-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16810-4

  • Online ISBN: 978-3-319-16811-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics