Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Class-Driven Color Transformation for Semantic Labeling

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9005))

Included in the following conference series:

  • 2607 Accesses

Abstract

We propose a novel class-driven color transformation aimed at semantic labeling. In contrast with other approaches elsewhere in the literature, our approach is a supervised one employing class information to learn a color transformation. Our method maps image color to a target space with maximum pairwise distances between classes and minimum scattering within each of them. To compute the color transformation, we pose the problem in terms of a composition of two mappings. The first mapping employs a pairwise discriminant cost function minimized through a steepest descent optimization to map the image color data onto a space spanned by the class set. It targets better separability between distinct classes as well as less scattering within each individual class. The second mapping corresponds to subspace projection of this class data to a target space with same dimensionality of image color data. To preserve distances attained by the first of the mappings, this subspace projection is effected making use of metric multi-dimensional scaling. We report our experiments on MSRC-21 and SBD datasets, where our method consistently improves overall and average performances of well-known publicly available TextonBoost and DARWIN multiclass segmentation frameworks at a negligible computational cost. These results confirms our contribution towards reflection of higher distinction in color space by imposing better separability in a novel representation which is learned from class information of the dataset under consideration.

National ICT Australia (NICTA) is funded by the Australian Government as represented by the Department of Broadband, Communications and the Digital Economy and the Australian Research Council through the ICT Center of Excellence program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Van De Sande, K., Gevers, T., Snoek, C.: Evaluating color descriptors for object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1582–1596 (2010)

    Article  Google Scholar 

  2. Finlayson, G.D., Drew, M.S.: The maximum ignorance assumption with positivity. In: Society for Imaging Science and Technology Conference on Color and Imaging, pp. 202–205 (1996)

    Google Scholar 

  3. Nayar, S.K., Bolle, R.M.: Reflectance based object recognition. Int. J. Comput. Vis. 17(3), 219–240 (1996)

    Article  Google Scholar 

  4. Dror, R.O., Adelson, E.H., Willsky, A.S.: Recognition of surface reflectance properties from a single image under unknown real-world illumination (2001)

    Google Scholar 

  5. Slater, D., Healey, G.: Object recognition using invariant profiles. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 827–832 (1997)

    Google Scholar 

  6. Jacobs, D.W., Belhumeur, P.N., Basri, R.: Comparing images under variable illumination. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 610–617 (1998)

    Google Scholar 

  7. Lin, S., Lee, S.W.: Using chromaticity distributions and eigenspace analysis for pose-, illumination-, and specularity-invariant recognition of 3D objects. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 426–431 (1997)

    Google Scholar 

  8. Lenz, R., Carmona, P.L., Meer, P.: The hyperbolic geometry of illumination-induced chromaticity changes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–6 (2007)

    Google Scholar 

  9. Chong, H.Y., Gortler, S.J., Zickler, T.: A perception-based color space for illumination-invariant image processing. ACM Trans. Graph. 27(3), 61 (2008)

    Article  Google Scholar 

  10. Strutz, T.: Adaptive selection of colour transformations for reversible image compression. In: IEEE European Signal Processing Conference (EUSIPCO), pp. 1204–1208 (2012)

    Google Scholar 

  11. Hu, G., Liu, C., Chuang, K., Yu, S., Tsui, T.: General regression neural network utilized for color transformation between images on RGB color space. In: IEEE International Conference on Machine Learning and Cybernetics (ICMLC), vol. 4, pp. 1793–1799 (2011)

    Google Scholar 

  12. Wyszecki, G., Stiles, W.S.: Color Science. Wiley, New York (1982)

    Google Scholar 

  13. Meyer, G.W., Greenberg, D.P.: Perceptual color spaces for computer graphics. In: ACM SIGGRAPH Computer Graphics, vol. 14(3), pp. 254–261 (1980)

    Google Scholar 

  14. Fu, Z., Robles-Kelly, A.: Learning object material categories via pairwise discriminant analysis. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (2007)

    Google Scholar 

  15. McLachlan, G.: Discriminant Analysis and Statistical Pattern Recognition. Wiley, Hoboken (2004)

    MATH  Google Scholar 

  16. Loog, M., Duin, R., Haeb-Umbach, R.: Multiclass linear dimension reduction by weighted pairwise Fisher criteria. IEEE Trans. Pattern Anal. Mach. Intell. 23(7), 762–766 (2001)

    Article  Google Scholar 

  17. Bickel, P.J., Levina, E.: Some theory for Fisher’s linear discriminant function, ‘naive Bayes’, and some alternatives when there are many more variables than observations. J. Bernoulli 10, 989–1010 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fan, J., Fan, Y.: High dimensional classification using features annealed independence rules. Ann. Stat. 36(6), 2605 (2008)

    Article  MATH  Google Scholar 

  19. Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G.: Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Nat. Acad. Sci. 99(10), 6567–6572 (2002)

    Article  Google Scholar 

  20. Krähenbühl, Ph., Koltun, V.: Efficient inference in fully connected crfs with gaussian edge potentials. arXiv preprint arXiv:1210.5644 (2012)

  21. Gould, S.: DARWIN: a framework for machine learning and computer vision research and development. J. Mach. Learn. Res. 13, 3533–3537 (2012)

    MATH  MathSciNet  Google Scholar 

  22. Shotton, J., Winn, J., Rother, C., Criminisi, A.: Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context. Int. J. Comput. Vis. 81(1), 2–23 (2009)

    Article  Google Scholar 

  23. Gould, S., Fulton, R., Koller, D.: Decomposing a scene into geometric and semantically consistent regions. In: IEEE International Conference on Computer Vision (ICCV), pp. 1–8 (2009)

    Google Scholar 

  24. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2009)

    Book  Google Scholar 

  25. Li, X., Jiang, T., Zhang, K.: Efficient and robust feature extraction by maximum margin criterion. IEEE Trans. Neural Netw. 17(1), 157–165 (2006)

    Article  Google Scholar 

  26. Hastie, T., Tibshirani, R.: Classification by pairwise coupling. Ann. Stat. 26(2), 451–471 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Harris, C.: Tracking with rigid models. In: Blake, A., Yuille, A. (eds.) Active Vision, pp. 59–73. MIT Press, Cambridge (1993)

    Google Scholar 

  28. Lin, D., Yan, S., Tang, X.: Pursuing informative projection on Grassmann manifold. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 1727–1734 (2006)

    Google Scholar 

  29. Baudat, G., Anouar, F.: Generalized discriminant analysis using a kernel approach. Neural Comput. 12(10), 2385–2404 (2000)

    Article  Google Scholar 

  30. Wang, X., Tang, X.: Dual-space linear discriminant analysis for face recognition. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, p. 564 (2004)

    Google Scholar 

  31. Geusebroek, J., Van den Boomgaard, R., Smeulders, A.W.M., Geerts, H.: Color invariance. IEEE Trans. Pattern Anal. Mach. Intell. 23(12), 1338–1350 (2001)

    Article  Google Scholar 

  32. Álvarez, J.M., Gevers, T., López, A.M.: Learning photometric invariance for object detection. Int. J. Comput. Vis. 90(1), 45–61 (2010)

    Article  Google Scholar 

Download references

Acknowledgement

Authors would like to highly appreciate reviewers’ efforts and positive feedbacks which improve the quality and readability of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Shahriari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Shahriari, A., Alvarez, J.M., Robles-Kelly, A. (2015). Class-Driven Color Transformation for Semantic Labeling. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9005. Springer, Cham. https://doi.org/10.1007/978-3-319-16811-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16811-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16810-4

  • Online ISBN: 978-3-319-16811-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics