Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Face Verification Across Pose via Look-Alike Ranked List Comparison

  • Conference paper
Robot Intelligence Technology and Applications 3

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 345))

  • 3877 Accesses

Abstract

Face verification is a process to determine whether the two input faces are of the same person or not. Traditional face verification approaches have focused mainly on frontal faces, but for diverse applications, face verification should also work on faces across different pose variation. Therefore, this paper presents a method that is robust to pose changes from -90 to 90 degrees via ranked list of look-alikes. Proposed method works in two steps. First, we measure the similarity between the probe image and all the images in the library and get two ranked lists of look-alikes. Second, we measure the similarity between the two ranked lists, which is considered as the final similarity between the two images. We suggest a way to re-rank the look-alike lists emphasizing the duplicates in the list. Our experimental results on the CMU Multi-PIE database, which is one of the most extensive database in terms of pose variation, show improved performance over the other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hwang, W., Wang, H., Kim, H., Kee, S.C., Kim, J.: Face recognition system using multiple face model of hybrid fourier feature under uncontrolled illumination variation. Trans. Img. Proc. 20(4), 1152–1165 (2011)

    Article  MathSciNet  Google Scholar 

  2. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. Trans. Img. Proc. 19(6), 1635–1650 (2010)

    Article  MathSciNet  Google Scholar 

  3. Hwang, W., Huang, X., Noh, K., Kim, J.: Face recognition system using extended curvature gabor classifier bunch for low-resolution face image. In: 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 15–22 (2011)

    Google Scholar 

  4. Blanz, V., Vetter, T.: Face recognition based on fitting a 3d morphable model. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1063–1074 (2003)

    Article  Google Scholar 

  5. Prabhu, U., Heo, J., Savvides, M.: Unconstrained pose-invariant face recognition using 3d generic elastic models. IEEE Trans. Pattern Anal. Mach. Intell. 33(10), 1952–1961 (2011)

    Article  Google Scholar 

  6. Sharma, A., Haj, M.A., Choi, J., Davis, L.S., Jacobs, D.W.: Robust pose invariant face recognition using coupled latent space discriminant analysis. Comput. Vis. Image Underst. 116(11), 1095–1110 (2012)

    Article  Google Scholar 

  7. Yi, D., Lei, Z., Li, S.Z.: Towards pose robust face recognition. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2013, pp. 3539–3545. IEEE Computer Society, Washington, DC (2013)

    Google Scholar 

  8. Zhang, X., Gao, Y.: Face recognition across pose: A review. Pattern Recogn. 42(11), 2876–2896 (2009)

    Article  Google Scholar 

  9. Schroff, F., Treibitz, T., Kriegman, D., Belongie, S.: Pose, illumination and expression invariant pairwise face-similarity measure via doppelgänger list comparison. In: Proceedings of the 2011 International Conference on Computer Vision, ICCV 2011, pp. 2494–2501. IEEE Computer Society, Washington, DC (2011)

    Google Scholar 

  10. Adini, Y., Moses, Y., Ullman, S.: Face recognition: The problem of compensating for changes in illumination direction. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 721–732 (1997)

    Article  Google Scholar 

  11. Zhu, C., Wen, F., Sun, J.: A rank-order distance based clustering algorithm for face tagging. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011, pp. 481–488. IEEE Computer Society, Washington, DC (2011)

    Google Scholar 

  12. Liu, X., Shan, S., Chen, X.: Face recognition after plastic surgery: A comprehensive study. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part II. LNCS, vol. 7725, pp. 565–576. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Hwang, W., Roh, K., Kim, J.: Markov network-based unified classifier for face identification. In: Proceedings of the 2013 IEEE International Conference on Computer Vision, ICCV 2013, pp. 1952–1959. IEEE Computer Society, Washington, DC (2013)

    Google Scholar 

  14. Kumar, R., Vassilvitskii, S.: Generalized distances between rankings. In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 571–580. ACM, New York (2010)

    Google Scholar 

  15. Jarvis, R.A., Patrick, E.A.: Clustering using a similarity measure based on shared near neighbors. IEEE Trans. Comput. 22(11), 1025–1034 (1973)

    Article  Google Scholar 

  16. Liu, C., Wechsler, H.: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. Trans. Img. Proc. 11(4), 467–476 (2002)

    Article  Google Scholar 

  17. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neuroscience 3(1), 71–86 (1991)

    Article  Google Scholar 

  18. Belhumeur, P.N., Hespanha, J.A.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  19. Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multipie. Image Vision Comput. 28(5), 807–813 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sojung Yun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yun, S., Kim, J. (2015). Face Verification Across Pose via Look-Alike Ranked List Comparison. In: Kim, JH., Yang, W., Jo, J., Sincak, P., Myung, H. (eds) Robot Intelligence Technology and Applications 3. Advances in Intelligent Systems and Computing, vol 345. Springer, Cham. https://doi.org/10.1007/978-3-319-16841-8_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16841-8_59

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16840-1

  • Online ISBN: 978-3-319-16841-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics