Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Decentralized CRT-Based Efficient Verifiable (ntn) Multi-secret Sharing Scheme

  • Conference paper
  • First Online:
Foundations and Practice of Security (FPS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8930))

Included in the following conference series:

  • 948 Accesses

Abstract

Secret sharing is critical to most applications making use of security and remains one of the most challenging research areas in modern cryptography. In this paper, we propose a novel efficient multi-secret sharing scheme that is based on the (ntn) secret sharing technique. We use the Chinese remainder theorem (CRT) to generate secret shares and the reconstruction of secrets instead of using the Lagrange polynomial interpolation. In addition, we discuss the security of the scheme, and provide a new method to generate verifiable shares that make the proposed scheme a verifiable secret sharing scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  2. Blakley, G.R.: Safeguarding cryptographic keys. In: National Computer Conference, 1979, ser. American Federation of Information Processing Societies Proceedings, vol. 48, pp. 313–317 (1979)

    Google Scholar 

  3. Mignotte, M.: How to share a secret? In: Beth, T. (ed.) EUROCRYPT 1982. LNCS, vol. 149, pp. 371–375. Springer, Heidelberg (1983)

    Chapter  Google Scholar 

  4. Asmuth, C.A., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. Inf. Theor. IT-29(2), 208–210 (1983)

    Article  MathSciNet  Google Scholar 

  5. He, J., Dawson, E.: Multistage secret sharing based on one-way function. Electron. Lett. 30(19), 1591–1592 (1994)

    Article  Google Scholar 

  6. He, J., Dawson, E.: Multisecret-sharing scheme based on one-way function. Electron. Lett. 31(2), 93–95 (1995)

    Article  Google Scholar 

  7. Lin, H.Y., Yeh, Y.S.: Dynamic multi-secret sharing scheme. Int. J. Contemp. Math. Sci. 3(1), 37–42 (2008)

    MATH  MathSciNet  Google Scholar 

  8. Chang, T., Hwang, M., Yang, W.: A new multi-stage secret sharing scheme using one-way function. ACM SIGOPS Oper. Syst. Rev. 39(1), 48–55 (2005)

    Article  MathSciNet  Google Scholar 

  9. Harn, L., Lin, C.: Strong (n, t, n) verifiable secret sharing scheme. Inf. Sci. 180(16), 3059–3064 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Quisquater, M., Preneel, B., Vandewalle, J.: On the security of the threshold scheme based on the chinese remainder theorem. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 199–210. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Herranz, J., Ruiz, A., Sáez, G.: New results and applications for multi-secret sharing schemes. Des. Codes Crypt. 73, 841–864 (2013)

    Article  Google Scholar 

  12. Waseda, A., Soshi, M.: Consideration for multi-threshold multi-secret sharing schemes. In: 2012 International Symposium on Information Theory and Its Applications (ISITA). IEEE (2012)

    Google Scholar 

  13. Liu, Y., Harn, L., Yang, C., Zhang, Y.: Efficient (n, t, n) secret sharing schemes. J. Syst. Softw. 85, 1325–1332 (2012)

    Article  Google Scholar 

  14. Stallings, W.: Cryptography and Network Security, 4th edn. Pearson Education India, New Delhi (2006)

    Google Scholar 

  15. Harn, L., Lin, C.: Detection and Identification of cheaters in (t, n) secret sharing scheme. Des. Codes Cryptogr. 52(1), 15–24 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ghodosi, H.: Comments on Harn–Lin’s cheating detection scheme. Des. Codes Crypt. 60(1), 63–66 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Wen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wen, W., Vaidya, B., Makrakis, D., Adams, C. (2015). Decentralized CRT-Based Efficient Verifiable (ntn) Multi-secret Sharing Scheme. In: Cuppens, F., Garcia-Alfaro, J., Zincir Heywood, N., Fong, P. (eds) Foundations and Practice of Security. FPS 2014. Lecture Notes in Computer Science(), vol 8930. Springer, Cham. https://doi.org/10.1007/978-3-319-17040-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17040-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17039-8

  • Online ISBN: 978-3-319-17040-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics