Abstract
Secret sharing is critical to most applications making use of security and remains one of the most challenging research areas in modern cryptography. In this paper, we propose a novel efficient multi-secret sharing scheme that is based on the (n, t, n) secret sharing technique. We use the Chinese remainder theorem (CRT) to generate secret shares and the reconstruction of secrets instead of using the Lagrange polynomial interpolation. In addition, we discuss the security of the scheme, and provide a new method to generate verifiable shares that make the proposed scheme a verifiable secret sharing scheme.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Blakley, G.R.: Safeguarding cryptographic keys. In: National Computer Conference, 1979, ser. American Federation of Information Processing Societies Proceedings, vol. 48, pp. 313–317 (1979)
Mignotte, M.: How to share a secret? In: Beth, T. (ed.) EUROCRYPT 1982. LNCS, vol. 149, pp. 371–375. Springer, Heidelberg (1983)
Asmuth, C.A., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. Inf. Theor. IT-29(2), 208–210 (1983)
He, J., Dawson, E.: Multistage secret sharing based on one-way function. Electron. Lett. 30(19), 1591–1592 (1994)
He, J., Dawson, E.: Multisecret-sharing scheme based on one-way function. Electron. Lett. 31(2), 93–95 (1995)
Lin, H.Y., Yeh, Y.S.: Dynamic multi-secret sharing scheme. Int. J. Contemp. Math. Sci. 3(1), 37–42 (2008)
Chang, T., Hwang, M., Yang, W.: A new multi-stage secret sharing scheme using one-way function. ACM SIGOPS Oper. Syst. Rev. 39(1), 48–55 (2005)
Harn, L., Lin, C.: Strong (n, t, n) verifiable secret sharing scheme. Inf. Sci. 180(16), 3059–3064 (2010)
Quisquater, M., Preneel, B., Vandewalle, J.: On the security of the threshold scheme based on the chinese remainder theorem. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 199–210. Springer, Heidelberg (2002)
Herranz, J., Ruiz, A., Sáez, G.: New results and applications for multi-secret sharing schemes. Des. Codes Crypt. 73, 841–864 (2013)
Waseda, A., Soshi, M.: Consideration for multi-threshold multi-secret sharing schemes. In: 2012 International Symposium on Information Theory and Its Applications (ISITA). IEEE (2012)
Liu, Y., Harn, L., Yang, C., Zhang, Y.: Efficient (n, t, n) secret sharing schemes. J. Syst. Softw. 85, 1325–1332 (2012)
Stallings, W.: Cryptography and Network Security, 4th edn. Pearson Education India, New Delhi (2006)
Harn, L., Lin, C.: Detection and Identification of cheaters in (t, n) secret sharing scheme. Des. Codes Cryptogr. 52(1), 15–24 (2009)
Ghodosi, H.: Comments on Harn–Lin’s cheating detection scheme. Des. Codes Crypt. 60(1), 63–66 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Wen, W., Vaidya, B., Makrakis, D., Adams, C. (2015). Decentralized CRT-Based Efficient Verifiable (n, t, n) Multi-secret Sharing Scheme. In: Cuppens, F., Garcia-Alfaro, J., Zincir Heywood, N., Fong, P. (eds) Foundations and Practice of Security. FPS 2014. Lecture Notes in Computer Science(), vol 8930. Springer, Cham. https://doi.org/10.1007/978-3-319-17040-4_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-17040-4_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-17039-8
Online ISBN: 978-3-319-17040-4
eBook Packages: Computer ScienceComputer Science (R0)