Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Cyclic Convolutional Codes over Separable Extensions

  • Conference paper
Coding Theory and Applications

Part of the book series: CIM Series in Mathematical Sciences ((CIMSMS,volume 3))

Abstract

We show that, under mild conditions of separability, an ideal code, as defined in Lopez-Permouth and Szabo (J Pure Appl Algebra 217(5):958–972, 2013), is a direct summand of an Ore extension and, consequently, it is generated by an idempotent element. We also design an algorithm for computing one of these idempotents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gluesing-Luerssen, H., Schmale, W.: On cyclic convolutional codes. Acta Appl. Math. 82(2), 183–237 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hirata, K., Sugano, K.: On semisimple extensions and separable extensions over non commutative rings. J. Math. Soc. Jpn. 18(4), 360–373 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lpez-Permouth, S.R., Szabo, S.: Convolutional codes with additional algebraic structure. J. Pure Appl. Algebra 217(5), 958–972 (2013)

    Article  MathSciNet  Google Scholar 

  4. Piret, P.: Structure and constructions of cyclic convolutional codes. IEEE Trans. Inf. Theory 22(2), 147–155 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  5. Roos, C.: On the structure of convolutional and cyclic convolutional codes. IEEE Trans. Inf. Theory 25(6), 676–683 (1979)

    Article  MATH  Google Scholar 

  6. Smarandache, R., Gluesing-Luerssen, H., Rosenthal, J.: Constructions of MDS-convolutional codes. IEEE Trans. Inf. Theory 47(5), 2045–2049 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Research partially supported by grant MTM2010-20940-C02-01 from the Ministerio de Ciencia e Innovacin of the Spanish Government and FEDER, and by grant mP-TIC-14 (2014) from CEI-BioTic Granada.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José Gómez-Torrecillas , F. J. Lobillo or Gabriel Navarro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gómez-Torrecillas, J., Lobillo, F.J., Navarro, G. (2015). Cyclic Convolutional Codes over Separable Extensions. In: Pinto, R., Rocha Malonek, P., Vettori, P. (eds) Coding Theory and Applications. CIM Series in Mathematical Sciences, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-17296-5_22

Download citation

Publish with us

Policies and ethics