Abstract
We show that, under mild conditions of separability, an ideal code, as defined in Lopez-Permouth and Szabo (J Pure Appl Algebra 217(5):958–972, 2013), is a direct summand of an Ore extension and, consequently, it is generated by an idempotent element. We also design an algorithm for computing one of these idempotents.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gluesing-Luerssen, H., Schmale, W.: On cyclic convolutional codes. Acta Appl. Math. 82(2), 183–237 (2004)
Hirata, K., Sugano, K.: On semisimple extensions and separable extensions over non commutative rings. J. Math. Soc. Jpn. 18(4), 360–373 (1966)
Lpez-Permouth, S.R., Szabo, S.: Convolutional codes with additional algebraic structure. J. Pure Appl. Algebra 217(5), 958–972 (2013)
Piret, P.: Structure and constructions of cyclic convolutional codes. IEEE Trans. Inf. Theory 22(2), 147–155 (1976)
Roos, C.: On the structure of convolutional and cyclic convolutional codes. IEEE Trans. Inf. Theory 25(6), 676–683 (1979)
Smarandache, R., Gluesing-Luerssen, H., Rosenthal, J.: Constructions of MDS-convolutional codes. IEEE Trans. Inf. Theory 47(5), 2045–2049 (2001)
Acknowledgements
Research partially supported by grant MTM2010-20940-C02-01 from the Ministerio de Ciencia e Innovacin of the Spanish Government and FEDER, and by grant mP-TIC-14 (2014) from CEI-BioTic Granada.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Gómez-Torrecillas, J., Lobillo, F.J., Navarro, G. (2015). Cyclic Convolutional Codes over Separable Extensions. In: Pinto, R., Rocha Malonek, P., Vettori, P. (eds) Coding Theory and Applications. CIM Series in Mathematical Sciences, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-17296-5_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-17296-5_22
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-17295-8
Online ISBN: 978-3-319-17296-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)