Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Accelerating Computation of Eigenvectors in the Dense Nonsymmetric Eigenvalue Problem

  • Conference paper
  • First Online:
High Performance Computing for Computational Science -- VECPAR 2014 (VECPAR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8969))

Abstract

In the dense nonsymmetric eigenvalue problem, work has focused on the Hessenberg reduction and QR iteration, using efficient algorithms and fast, Level 3 BLAS. Comparatively, computation of eigenvectors performs poorly, limited to slow, Level 2 BLAS performance with little speedup on multi-core systems. It has thus become a dominant cost in the solution of the eigenvalue problem. To address this, we present improvements for the eigenvector computation to use Level 3 BLAS and parallelize the triangular solves, achieving good parallel scaling and accelerating the overall eigenvalue problem more than three-fold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bischof, C.: A summary of block schemes for reducing a general matrix to Hessenberg form. Technical report, ANL/MCS-TM-175, Argonne National Lab (1993)

    Google Scholar 

  2. Bischof, C., Van Loan, C.: The WY representation for products of Householder matrices. SIAM J. Sci. Stat. Comput. 8(1), s2–s13 (1987)

    Article  Google Scholar 

  3. Braman, K., Byers, R., Mathias, R.: The multishift QR algorithm. part I: maintaining well-focused shifts and level 3 performance. SIAM J. Matrix Anal. Appl. 23(4), 929–947 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Braman, K., Byers, R., Mathias, R.: The multishift QR algorithm. part II: aggressive early deflation. SIAM J. Matrix Anal. Appl. 23(4), 948–973 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. Johns Hopkins, Baltimore (1996)

    MATH  Google Scholar 

  6. Kågström, B., Kressner, D., Shao, M.: On aggressive early deflation in parallel variants of the QR algorithm. In: Jónasson, K. (ed.) PARA 2010, Part I. LNCS, vol. 7133, pp. 1–10. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Karlsson, L., Kågström, B.: Parallel two-stage reduction to Hessenberg form using dynamic scheduling on shared-memory architectures. Parallel Comput. 37(12), 771–782 (2011)

    Article  MATH  Google Scholar 

  8. MAGMA. http://icl.eecs.utk.edu/magma/

  9. McCalpin, J.D.: Memory bandwidth and machine balance in current high performance computers. In: IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, December 1995

    Google Scholar 

  10. Tomov, S., Nath, R., Dongarra, J.: Accelerating the reduction to upper Hessenberg, tridiagonal, and bidiagonal forms through hybrid GPU-based computing. Parallel Comput. 36(12), 645–654 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The results were obtained in part with the financial support of the Russian Scientific Fund, Agreement N14-11-00190; the National Science Foundation, U.S. Department of Energy, Intel, NVIDIA, and AMD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Gates .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gates, M., Haidar, A., Dongarra, J. (2015). Accelerating Computation of Eigenvectors in the Dense Nonsymmetric Eigenvalue Problem. In: Daydé, M., Marques, O., Nakajima, K. (eds) High Performance Computing for Computational Science -- VECPAR 2014. VECPAR 2014. Lecture Notes in Computer Science(), vol 8969. Springer, Cham. https://doi.org/10.1007/978-3-319-17353-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17353-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17352-8

  • Online ISBN: 978-3-319-17353-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics