Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Generalizing Efficient Multiparty Computation

  • Conference paper
Information Theoretic Security (ICITS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9063))

Included in the following conference series:

  • 542 Accesses

Abstract

We focus on generalizing constructions of Batch Single- Choice Cut-And-Choose Oblivious Transfer and Multi-sender k-out-of-n Oblivious Transfer, which are at the core of efficient secure computation constructions proposed by Lindell et al. and the IPS compiler. Our approach consists in showing that such primitives can be based on a much weaker and simpler primitive called Verifiable Oblivious Transfer (VOT) with low overhead. As an intermediate step we construct Generalized Oblivious Transfer from VOT. Finally, we show that Verifiable Oblivious Transfer can be obtained from a structure preserving oblivious transfer protocol (SPOT) through an efficient transformation that uses Groth-Sahai proofs and structure preserving commitments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Abe, M., et al.: Optimal structure-preserving signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and noninteractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 356–374. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Canetti, R.: Universally composable security: A new paradigm for cryptograpic protocols. In: FOCS 2001 (2001), Current Full Version Available at Cryptology ePrint Archive, Report 2000/067 (2001)

    Google Scholar 

  5. Cachin, C., Camenisch, J.L.: Optimistic fair secure computation. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Camenisch, J., et al.: Structure preserving CCA secure encryption and applications. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 89–106. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Choi, S.G., Katz, J., Wee, H., Zhou, H.-S.: Efficient, adaptively secure, and composable oblivious transfer with a single, global CRS. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 73–88. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Camenisch, J.L., Stadler, M.A.: Efficient group signature schemes for large groups (extended abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  10. Crépeau, C., van de Graaf, J., Tapp, A.: Committed oblivious transfer and private multi-party computation. In: Coppersmith, D. (ed.) Advances in Cryptology - CRYPT0 1995. LNCS, vol. 963, pp. 110–123. Springer, Heidelberg (1995)

    Google Scholar 

  11. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against continuous memory attacks. In: FOCS, pp. 511–520. IEEE Computer Society (2010)

    Google Scholar 

  12. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Communications of the ACM 28(6), 637–647 (1985)

    Article  MathSciNet  Google Scholar 

  13. Green, M., Hohenberger, S.: Universally composable adaptive oblivious transfer. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC 1987, pp. 218–229. ACM (1987)

    Google Scholar 

  15. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Ghadafi, E., Smart, N.P., Warinschi, B.: Groth-Sahai proofs revisited. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 177–192. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applications. In: Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems 1997, pp. 174–183. IEEE (1997)

    Google Scholar 

  18. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer - efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Jarecki, S.: Efficient two-party secure computation on committed inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Kilian, J.: Founding crytpography on oblivious transfer. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 20–31. ACM (1988)

    Google Scholar 

  21. Kiraz, M.S., Schoenmakers, B., Villegas, J.: Efficient committed oblivious transfer of bit strings. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 130–144. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adversaries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 1–17. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Lindell, Y., Oxman, E., Pinkas, B.: The IPS compiler: Optimizations, variants and concrete efficiency. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 259–276. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  24. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  25. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious transfer. J. Cryptology 25(4), 680–722 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical report, Aiken Compuation Laboratory, Harvard University, TR-81 (1981)

    Google Scholar 

  28. Shankar, B., Srinathan, K., Rangan, C.P.: Alternative protocols for generalized oblivious transfer. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds.) ICDCN 2008. LNCS, vol. 4904, pp. 304–309. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  29. Tassa, T.: Generalized oblivious transfer by secret sharing. Designs, Codes and Cryptography 58(1), 11–21 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS 1986, pp. 162–167. IEEE (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo M. David .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

David, B.M., Nishimaki, R., Ranellucci, S., Tapp, A. (2015). Generalizing Efficient Multiparty Computation. In: Lehmann, A., Wolf, S. (eds) Information Theoretic Security. ICITS 2015. Lecture Notes in Computer Science(), vol 9063. Springer, Cham. https://doi.org/10.1007/978-3-319-17470-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17470-9_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17469-3

  • Online ISBN: 978-3-319-17470-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics