Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Approximation

  • Reference work entry
  • First Online:
Encyclopedia of GIS

Synonyms

Rough approximation; Rough set theory

Definition

Approximations are representations that describe entities in terms of relations to cells in a partition which serves as a frame of reference. Approximations give raise to an indiscernibility relation: in the “approximation space” two entities are indiscernible if and only if they have identical approximations. Approximations are used as tools for the representation of objects with indeterminate boundaries and multi-resolution spatial, temporal, and attribute data.

Example

At every moment in time, your body axes create a partition of space consisting of the cells front-left (fl), back-left (bl), front-right (fr), and back-right (br) as depicted in Fig. 1. Every object, including your-brother (yb), your-sister1 (ys1), your-sister2 (ys1), and your-house(yh), can be characterized in terms of their relations to the cells of the partition. For example, part-of(ys1,fl), disjoint(ys1,fr), disjoint(ys1,br), disjoint(ys1,bl),...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,511.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bittner T (2002) Approximate qualitative temporal reasoning. Ann Math Artif Intell 35(1-2):39–80

    Article  MathSciNet  MATH  Google Scholar 

  • Bittner T, Stell JG (2002) Approximate qualitative spatial reasoning. Spat Cognit Comput 2(4):435–466

    Google Scholar 

  • Bittner T, Stell JG (2002) Vagueness and rough location. GeoInformatica 6:99–121

    Article  MATH  Google Scholar 

  • Bittner T, Stell JG (2003) Stratified rough sets and vagueness. In: Kuhn W, Worboys M, Impf S (eds) Spatial information theory. Cognitive and computational foundations of geographic information science. International conference COSIT’03. Springer, Berlin, pp 286–303

    Google Scholar 

  • Burrough P, Frank AU (eds) (1995) Geographic objects with indeterminate boundaries, GISDATA series II. Taylor and Francis, London

    Google Scholar 

  • Cohn AG, Gotts NM (1996) The ‘egg-yolk’ representation of regions with indeterminate boundaries. In: Burrough PA, Frank AU (eds) Geographic objects with indeterminate boundaries, GISDATA series II. Taylor and Francis, London, pp 171–187

    Google Scholar 

  • Duentsch I, Gediga G (2000) Rough set data analysis: a road to non-invasive knowledge discovery. Methodos Publishers, Bangor

    Google Scholar 

  • Goodday JM, Cohn AG (1994) Conceptual neighborhoods in temporal and spatial reasoning. In: ECAI-94 spatial and temporal reasoning workshop, Amsterdam

    Google Scholar 

  • Hobbs J (1985) Granularity. In: Proceedings of the IJCAI 85, Los Angeles

    Google Scholar 

  • Orłowska E (ed) (1998) Incomplete information – rough set analysis. Studies in fuzziness and soft computing, vol 13. Physica-Verlag, Heidelberg

    Google Scholar 

  • Pawlak Z (1982) Rough sets. Internat J Comput Inform 11:341–356

    Article  MathSciNet  MATH  Google Scholar 

  • Pawlak Z (1991) Rough sets: theoretical aspects of reasoning about data. Theory and decision library. Series D, system theory, knowledge engineering, and problem solving, vol 9. Kluwer Academic Publishers, Dordrecht/Boston

    Google Scholar 

  • Polkowski L, Skowron A (1996) Rough mereology: a new paradigm for approximate reasoning. J Approx Reason 15(4):333–365

    Article  MathSciNet  MATH  Google Scholar 

  • Polkowski L (2004) A survey of recent results on spatial reasoning via rough inclusions. In: Bolc L, Michalewicz Z, Nishida T (eds) Intelligent media technology for communicative intelligence, second international workshop (IMTCI 2004). Lecture notes in computer science. Springer, Berlin

    Google Scholar 

  • Randell DA, Cui Z, Cohn AG (1992) A spatial logic based on regions and connection. In: Nebel B, Rich C, Swartout W (eds) Principles of knowledge representation and reasoning. Proceedings of the third international conference (KR’92). Morgan Kaufmann, San Mateo, pp 165–176

    Google Scholar 

  • Slezak D, Wang G, Szczuka MS, Düntsch I, Yao Y (eds) (2005) Rough sets, fuzzy sets, data mining, and granular computing. In: 10th international conference RSFDGrC 2005 (Part I). Lecture notes in computer science, vol 3641. Springer, Regina, 31 Aug–3 Sept 2005

    Google Scholar 

  • Stell JG (2003) Granularity in change over time. In: Duckham M, Goodchild M, Worboys M (eds) Foundations of geographic information science. Taylor and Francis, New York, pp 95–115

    Chapter  Google Scholar 

  • Stell JG (2000) The representation of discrete multi-resolution spatial knowledge. In: Cohn AG, Giunchiglia F, Selman B (eds) Principles of knowledge representation and reasoning: proceedings of the seventh international conference (KR2000). Morgan Kaufmann, San Francisco, pp 38–49

    Google Scholar 

  • Stell JG, Worboys MF (1998) Stratified map spaces: a formal basis for multi-resolution spatial databases. In: Poiker TK, Chrisman N (eds) Proceedings 8th international symposium on spatial data handling (SDH’98). International Geographical Union, pp 180–189

    Google Scholar 

  • Worboys MF (1998) Computation with imprecise geospatial data. Comput Environ Urban Syst 22: 85–106

    Article  Google Scholar 

  • Worboys MF (1998) Imprecision in finite resolution spatial data. GeoInformatica 2:257–279

    Article  Google Scholar 

Recommended Reading

  • Pawlak Z, Grzymala-Busse J, Slowinski R, Ziarko RA (1995) Rough sets Commun ACM 38(11):89–95

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Bittner, T., Stell, J.G. (2017). Approximation. In: Shekhar, S., Xiong, H., Zhou, X. (eds) Encyclopedia of GIS. Springer, Cham. https://doi.org/10.1007/978-3-319-17885-1_65

Download citation

Publish with us

Policies and ethics