Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Nearest Neighbor Method Based on Local Distribution for Classification

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9077))

Included in the following conference series:

Abstract

The k-nearest-neighbor (kNN) algorithm is a simple but effective classification method which predicts the class label of a query sample based on information contained in its neighborhood. Previous versions of kNN usually consider the k nearest neighbors separately by the quantity or distance information. However, the quantity and the isolated distance information may be insufficient for effective classification decision. This paper investigates the kNN method from a perspective of local distribution based on which we propose an improved implementation of kNN. The proposed method performs the classification task by assigning the query sample to the class with the maximum posterior probability which is estimated from the local distribution based on the Bayesian rule. Experiments have been conducted using 15 benchmark datasets and the reported experimental results demonstrate excellent performance and robustness for the proposed method when compared to other state-of-the-art classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bache, K., Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  2. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011). http://www.csie.ntu.edu.tw/cjlin/libsvm

  3. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  4. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. John Wiley & Sons (2012)

    Google Scholar 

  5. Dudani, S.: The distance-weighted k-nearest-neighbor rule. IEEE Transactions on Systems, Man and Cybernetics 4, 325–327 (1976)

    Article  Google Scholar 

  6. Duong, T.: ks: Kernel density estimation and kernel discriminant analysis for multivariate data in r. Journal of Statistical Software 21(7), 1–16 (2007)

    Google Scholar 

  7. Friedman, J., et al.: Flexible metric nearest neighbor classification. Unpublished manuscript available by anonymous FTP from playfair. stanford. edu (see pub/friedman/README) (1994)

    Google Scholar 

  8. Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian data analysis. CRC Press (2013)

    Google Scholar 

  9. Govindarajan, M., Chandrasekaran, R.: Evaluation of k-nearest neighbor classifier performance for direct marketing. Expert Systems with Applications 37(1), 253–258 (2010)

    Article  Google Scholar 

  10. Han, J., Kamber, M., Pei, J.: Data mining: concepts and techniques. Morgan kaufmann (2006)

    Google Scholar 

  11. Hand, D., Mannila, H., Smyth, P.: Principles of data mining. MIT Press (2001)

    Google Scholar 

  12. Hollander, M., Wolfe, D.A.: Nonparametric statistical methods. John Wiley & Sons, NY (1999)

    Google Scholar 

  13. Hotta, S., Kiyasu, S., Miyahara, S.: Pattern recognition using average patterns of categorical k-nearest neighbors. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 4, pp. 412–415. IEEE (2004)

    Google Scholar 

  14. Kononenko, I., Kukar, M.: Machine learning and data mining. Elsevier (2007)

    Google Scholar 

  15. Lehmann, E.L., Casella, G.: Theory of point estimation, vol. 31. Springer (1998)

    Google Scholar 

  16. Li, B., Chen, Y., Chen, Y.: The nearest neighbor algorithm of local probability centers. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 38(1), 141–154 (2008)

    Article  Google Scholar 

  17. Magnussen, S., McRoberts, R.E., Tomppo, E.O.: Model-based mean square error estimators for k-nearest neighbour predictions and applications using remotely sensed data for forest inventories. Remote Sensing of Environment 113(3), 476–488 (2009)

    Article  Google Scholar 

  18. Mitani, Y., Hamamoto, Y.: A local mean-based nonparametric classifier. Pattern Recognition Letters 27(10), 1151–1159 (2006)

    Article  Google Scholar 

  19. Reynolds, D.: Gaussian mixture models. In: Encyclopedia of Biometrics, pp. 659–663 (2009)

    Google Scholar 

  20. Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Philip, S.Y., et al.: Top 10 algorithms in data mining. Knowledge and Information Systems 14(1), 1–37 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mao, C., Hu, B., Moore, P., Su, Y., Wang, M. (2015). Nearest Neighbor Method Based on Local Distribution for Classification. In: Cao, T., Lim, EP., Zhou, ZH., Ho, TB., Cheung, D., Motoda, H. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2015. Lecture Notes in Computer Science(), vol 9077. Springer, Cham. https://doi.org/10.1007/978-3-319-18038-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18038-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18037-3

  • Online ISBN: 978-3-319-18038-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics