Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

TRUPI: Twitter Recommendation Based on Users’ Personal Interests

  • Conference paper
Computational Linguistics and Intelligent Text Processing (CICLing 2015)

Abstract

Twitter has emerged as one of the most powerful micro-blogging services for real-time sharing of information on the web. The large volume of posts in several topics is overwhelming to twitter users who might be interested in only few topics. To this end, we propose TRUPI, a personalized recommendation system for the timelines of twitter users where tweets are ranked by the user’s personal interests. The proposed system combines the user social features and interactions as well as the history of her tweets content to attain her interests. The system captures the users interests dynamically by modeling them as a time variant in different topics to accommodate the change of these interests over time. More specifically, we combine a set of machine learning and natural language processing techniques to analyze the topics of the various tweets posted on the user’s timeline and rank them based on her dynamically detected interests. Our extensive performance evaluation on a publicly available dataset demonstrates the effectiveness of TRUPI and shows that it outperforms the competitive state of the art by 25% on nDCG@25, and 14% on MAP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. http://www.noslang.com/ . Internet Slang Dictionary & Translator (last accessed January 06, 2014)

  2. Abel, F., Gao, Q., Houben, G.-J., Tao, K.: Analyzing User Modeling on Twitter for Personalized News Recommendations. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 1–12. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Ritter, A., Clark, S.: Twitter NLP Tools (2011), https://github.com/aritter/twitter_nlp (last accessed January 06, 2014)

  4. Becker, H., Naaman, M., Gravano, L.: Beyond Trending Topics: Real-World Event Identification on Twitter. In: Procs. ICWSM 2011 (2011)

    Google Scholar 

  5. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. The Journal of Machine Learnnig Research 3, 993–1022 (2003)

    MATH  Google Scholar 

  6. Chen, J., Nairn, R., Nelson, L., Bernstein, M., Chi, E.: Short and Tweet: Experiments on Recommending Content from Information Streams. In: CHI (2010)

    Google Scholar 

  7. Chen, K., Chen, T., Zheng, G., Jin, O., Yao, E., Yu, Y.: Collaborative Personalized Tweet Recommendation. In: Procs. of SIGIR 2012 (2012)

    Google Scholar 

  8. Cortes, C., Vapnik, V.: Support-Vector Networks. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  9. Duan, Y., Jiang, L., Qin, T., Zhou, M., Shum, H.-Y.: An empirical study on learning to rank of tweets. In: COLING 2010 (2010)

    Google Scholar 

  10. Feng, W., Wang, J.: Retweet or Not?: Personalized Tweet Re-ranking. In: Procs. of WSDM 2013, pp. 577–586 (2013)

    Google Scholar 

  11. GNU Aspell (2011), http://aspell.net/ (last accessed January 06, 2014)

  12. Godin, F., Slavkovikj, V., De Neve, W., Schrauwen, B., Van de Walle, R.: Using Topic Models for Twitter Hashtag Recommendation. In: Procs. of WWW 2013 Companion (2013)

    Google Scholar 

  13. Guo, Y., Kang, L., Shi, T.: Personalized Tweet Ranking Based on AHP: A Case Study of Micro-blogging Message Ranking in T.Sina. In: WI-IAT 2012 (2012)

    Google Scholar 

  14. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explorations 11(1), 10–18 (2009)

    Article  Google Scholar 

  15. Hannon, J., Bennett, M., Smyth, B.: Recommending twitter users to follow using content and collaborative filtering approaches. In: RecSys 2010 (2010)

    Google Scholar 

  16. Hannon, J., McCarthy, K., Smyth, B.: Finding Useful Users on Twitter: Twittomender the Followee Recommender. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 784–787. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Huffington Post’s Twitter Statistics, http://www.huffingtonpost.com/belle-beth-cooper/10-surprising-new-twitter_b_4387476.html (last accessed January 06, 2014)

  18. Joachims, T.: Optimizing Search Engines Using Clickthrough Data. In: Procs. of KDD 2002, pp. 133–142 (2002)

    Google Scholar 

  19. Khater, S., Elmongui, H.G., Gracanin, D.: Tweets You Like: Personalized Tweets Recommendation based on Dynamic Users Interests. In: SocialInformatics 2014 (2014)

    Google Scholar 

  20. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a Social Network or a News Media. In: Procs. of WWW 2010, pp. 591–600 (2010)

    Google Scholar 

  21. Kywe, S.M., Hoang, T.-A., Lim, E.-P., Zhu, F.: On Recommending Hashtags in Twitter Networks. In: Procs. of SocInfo 2012, pp. 337–350 (2012)

    Google Scholar 

  22. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - A Large-scale, Multilingual Knowledge Base Extracted from Wikipedia. Semantic Web Journal (2014)

    Google Scholar 

  23. Li, R., Wang, S., Deng, H., Wang, R., Chang, K.C.-C.: Towards Social User Profiling: Unified and Discriminative Influence Model for Inferring Home Locations. In: Procs. of KDD 2012, pp. 1023–1031 (2012)

    Google Scholar 

  24. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press (2008)

    Google Scholar 

  25. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Estimation of Word Representations in Vector Space. In: ICLR 2013 Workshops (2013)

    Google Scholar 

  26. De Francisci Morales, G., Gionis, A., Lucchese, C.: From Chatter to Headlines: Harnessing the Real-time Web for Personalized News Recommendation. In: Procs. of WSDM 2012, pp. 153–162 (2012)

    Google Scholar 

  27. Pennacchiotti, M., Silvestri, F., Vahabi, H., Venturini, R.: Making Your Interests Follow You on Twitter. In: Procs. of CIKM 2012 (2012)

    Google Scholar 

  28. Robert Half Technology. Whistle - But Don’t tweet - While You Work (2009), http://rht.mediaroom.com/index.php?s=131&item=790 (last accessed January 06, 2014)

  29. Salton, G., Buckley, C.: Term-weighting Approaches in Automatic Text Retrieval. Information Processing & Management 24(5), 513–523 (1988)

    Article  Google Scholar 

  30. Santos, I., Miñambres-Marcos, I., Laorden, C., Galán-García, P., Santamaría-Ibirika, A., Bringas, P.G.: Twitter Content-Based Spam Filtering. In: Procs. of CISIS 2013, pp. 449–458 (2013)

    Google Scholar 

  31. The Open Directory Project, http://www.dmoz.org/ (last accessed January 06, 2014)

  32. Twitter (2006). http://www.twitter.com/ (last accessed January 06, 2014)

  33. Twitter REST API, https://dev.twitter.com/docs (last accessed January 06, 2014)

  34. Twitter Usage, http://about.twitter.com/company (last accessed January 06, 2014)

  35. UDI-TwitterCrawl-Aug2012 (2012), https://wiki.cites.illinois.edu/wiki/display/forward/Dataset-UDI-TwitterCrawl-Aug2012 (last accessed January 06, 2014)

  36. Uysal, I., Croft, W.B.: User oriented tweet ranking: a filtering approach to microblogs. In: Procs. of CIKM 2011, pp. 2261–2264 (2011)

    Google Scholar 

  37. Wikipedia (2001), http://www.wikipedia.org/ (last accessed January 06, 2014)

  38. WikiSynonyms, http://wikisynonyms.ipeirotis.com/ (last accessed January 06, 2014)

  39. Yan, R., Lapata, M., Li, X.: Tweet Recommendation with Graph Co-ranking. In: Procs. of ACL 2012, pp. 516–525 (2012)

    Google Scholar 

  40. YouTube (2005), http://www.youtube.com/ (last accessed January 06, 2014)

  41. Zangerle, E., Gassler, W., Specht, G.: Recommending#-Tags in Twitter. In: Procs. of SASWeb 2011, pp. 67–78 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hicham G. Elmongui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Elmongui, H.G., Mansour, R., Morsy, H., Khater, S., El-Sharkasy, A., Ibrahim, R. (2015). TRUPI: Twitter Recommendation Based on Users’ Personal Interests. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2015. Lecture Notes in Computer Science(), vol 9042. Springer, Cham. https://doi.org/10.1007/978-3-319-18117-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18117-2_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18116-5

  • Online ISBN: 978-3-319-18117-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics