Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Improved Machine Learning Approach for Selecting a Polyhedral Model Transformation

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (Canadian AI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9091))

Included in the following conference series:

  • 2712 Accesses

Abstract

Algorithms in fields like image manipulation, signal processing, and statistics frequently employ tight CPU-bound loops, whose performance is highly dependent on efficient utilization of the CPU and memory bus. The polyhedral model allows the automatic generation of loop nest transformations that are semantically equivalent to the original. The challenge, however, is to select the transformation that gives the highest performance on a given architecture. In this paper, we present an improved machine learning approach to select the best transformation. Our approach can be used as a stand-alone method that yields accuracy comparable to the best previous approach but offers a substantially faster selection process. As well, our approach can be combined with the best previous approach into a higher level selection process that is more accurate than either method alone. Compared to prior work, the key distinguishing characteristics to our approach are formulating the problem as a classification problem rather than a regression problem, using static structural features in addition to dynamic performance counter features, performing feature selection, and using ensemble methods to boost the performance of the classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alpaydin, E.: Introduction to Machine Learning, 2nd edn. The MIT Press (2010)

    Google Scholar 

  2. Benabderrahmane, M.-W., Pouchet, L.-N., Cohen, A., Bastoul, C.: The polyhedral model is more widely applicable than you think. In: Gupta, R. (ed.) CC 2010. LNCS, vol. 6011, pp. 283–303. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Cavazos, J., Fursin, G., Agakov, F., Bonilla, E., O’Boyle, M.F.P., Temam, O.: Rapidly selecting good compiler optimizations using performance counters. In: Proceedings of CGO 2007, pp. 185–197 (2007)

    Google Scholar 

  4. Feautrier, P.: Automatic parallelization in the polytope model. In: Perrin, G.-R., Darte, A. (eds.) The Data Parallel Programming Model. LNCS, vol. 1132, pp. 79–103. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  5. Fürnkranz, J., Hüllermeier, E.: Pairwise preference learning and ranking. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 145–156. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Girbal, S., Vasilache, N., Bastoul, C., Cohen, A., Parello, D., Sigler, M., Temam, O.: Semi-automatic composition of loop transformations for deep parallelism and memory hierarchies. Intl J. of Parallel Programming 34, 2006 (2006)

    Article  Google Scholar 

  7. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  8. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data mining, Inference and Prediction, 2nd edn. Springer (2009)

    Google Scholar 

  9. Kennedy, K., McKinley, K.S.: Maximizing loop parallelism and improving data locality via loop fusion and distribution. In: Banerjee, U., Gelernter, D., Nicolau, A., Padua, D.A. (eds.) LCPC 1993. LNCS, vol. 768, pp. 301–320. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  10. Larsen, S., Amarasinghe, S.: Exploiting superword level parallelism with multimedia instruction sets. In: Proceedings of PLDI 2000, pp. 145–156 (2000)

    Google Scholar 

  11. Lim, A.W., Lam, M.S.: Maximizing parallelism and minimizing synchronization with affine transforms. In: Proceedings of POPL 1997, pp. 201–214 (1997)

    Google Scholar 

  12. Park, E., Cavazos, J., Pouchet, L.N., Bastoul, C., Cohen, A., Sadayappan, P.: Predictive modeling in a polyhedral optimization space. Intl J. of Parallel Programming 41, 704–750 (2013)

    Article  Google Scholar 

  13. Park, E., Pouche, L.N., Cavazos, J., Cohen, A., Sadayappan, P.: Predictive modeling in a polyhedral optimization space. In: Proc. of CGO 2011, pp. 119–129 (2011)

    Google Scholar 

  14. Pouchet, L.N., Bastoul, C., Cohen, A., Cavazos, J.: Iterative optimization in the polyhedral model: Part II, multi-dimensional time. In: Proceedings of PLDI 2008, pp. 90–100 (2008)

    Google Scholar 

  15. Pouchet, L.N., Bastoul, C., Cohen, A., Vasilache, N.: Iterative optimization in the polyhedral model: Part I, one-dimensional time. In: Proceedings of CGO 2007, pp. 144–156 (2007)

    Google Scholar 

  16. Pouchet, L.N., Bondhugula, U., Bastoul, C., Cohen, A., Ramanujam, J., Sadayappan, P., Vasilache, N.: Loop transformations: convexity, pruning and optimization. SIGPLAN Not. 46, 549–562 (2011)

    Article  Google Scholar 

  17. Stephenson, M., Amarasinghe, S.: Predicting unroll factors using supervised classification. In: Proceedings of CGO 2005, pp. 123–134 (2005)

    Google Scholar 

  18. Wolf, M.E., Lam, M.S.: A data locality optimizing algorithm. In: Proceedings of PLDI 1991, pp. 30–44 (1991)

    Google Scholar 

  19. Wu, T.F., Lin, C.J., Weng, R.C.: Probability estimates for multi-class classification by pairwise coupling. J. Mach. Learn. Res. 5, 975–1005 (2004)

    MATH  MathSciNet  Google Scholar 

  20. Yuki, T., Renganarayanan, L., Rajopadhye, S., Anderson, C., Eichenberger, A.E., O’Brien, K.: Automatic creation of tile size selection models. In: Proceedings of CGO 2010, pp. 190–199 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter van Beek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ruvinskiy, R., van Beek, P. (2015). An Improved Machine Learning Approach for Selecting a Polyhedral Model Transformation. In: Barbosa, D., Milios, E. (eds) Advances in Artificial Intelligence. Canadian AI 2015. Lecture Notes in Computer Science(), vol 9091. Springer, Cham. https://doi.org/10.1007/978-3-319-18356-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18356-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18355-8

  • Online ISBN: 978-3-319-18356-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics