Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Differential Attacks Against SPN: A Thorough Analysis

  • Conference paper
Codes, Cryptology, and Information Security (C2SI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9084))

Abstract

This work aims at determining when the two-round maximum expected differential probability in an SPN with an MDS diffusion layer is achieved by a differential having the fewest possible active Sboxes. This question arises from the fact that minimum-weight differentials include the best differentials for the AES and several variants. However, we exhibit some SPN for which the two-round MEDP is achieved by some differentials involving a number of active Sboxes which exceeds the branch number of the linear layer. On the other hand, we also prove that, for some particular families of Sboxes, the two-round MEDP is always achieved for minimum-weight differentials.

Partially supported by the French Agence Nationale de la Recherche through the BLOC project under Contract ANR-11-INS-011.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Augot, D., Finiasz, M.: Direct Construction of Recursive MDS Diffusion Layers using Shortened BCH Codes. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 3–17. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  2. Bending, T.D., Fon-Der-Flaass, D.: Crooked Functions, Bent Functions, and Distance Regular Graphs. Electr. J. Comb. 5 (1998)

    Google Scholar 

  3. Berger, T.P.: Construction of recursive MDS diffusion layers from Gabidulin codes. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp. 274–285. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Journal of Cryptology, 3–72 (1991)

    Google Scholar 

  5. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Brinkmann, M., Leander, G.: On the classification of APN functions up to dimension five. Designs, Codes and Cryptography 49(1-3), 273–288 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Canteaut, A., Charpin, P.: Decomposing bent functions. IEEE Transactions on Information Theory 49(8), 2004–2019 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Canteaut, A., Roué, J.: On the behaviors of affine equivalent sboxes regarding differential and linear attacks. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 45–74. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  9. Chun, K., Kim, S., Lee, S., Sung, S.H., Yoon, S.: Differential and linear cryptanalysis for 2-round SPNs. Inf. Process. Lett. 87(5), 277–282 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Daemen, J.: Cipher and hash function design strategies based on linear and differential cryptanalysis. Ph.D. thesis, K.U. Leuven (1995)

    Google Scholar 

  11. Daemen, J., Rijmen, V.: The Wide Trail Design Strategy. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography. Springer (2002)

    Google Scholar 

  13. Daemen, J., Rijmen, V.: Understanding Two-Round Differentials in AES. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 78–94. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Daemen, J., Rijmen, V.: Correlation Analysis in GF(2n). In: Advanced Linear Cryptanalysis of Block and Stream Ciphers. Cryptology and information security, pp. 115–131. IOS Press (2011)

    Google Scholar 

  15. Hong, S.H., Lee, S.-J., Lim, J.-I., Sung, J., Cheon, D.H., Cho, I.: Provable Security against Differential and Linear Cryptanalysis for the SPN Structure. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 273–283. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Kavun, E.B., Lauridsen, M.M., Leander, G., Rechberger, C., Schwabe, P., Yalçın, T.: Prøst v1.1. Submission to the CAESAR competition (2014), http://proest.compute.dtu.dk/proestv11.pdf

  17. Keliher, L., Sui, J.: Exact maximum expected differential and linear probability for two-round Advanced Encryption Standard. IET Information Security 1(2), 53–57 (2007)

    Article  Google Scholar 

  18. Kyureghyan, G.M.: Crooked maps in \({F}_{2^n}\). Finite Fields and Their Applications 13(3), 713–726 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  20. MacWilliams, F., Sloane, N.: The Theory of Error-Correcting Codes, vol. 16. North-Holland (1977)

    Google Scholar 

  21. Park, S., Sung, S.H., Lee, S.-J., Lim, J.-I.: Improving the Upper Bound on the Maximum Differential and the Maximum Linear Hull Probability for SPN Structures and AES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 247–260. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  22. Sajadieh, M., Dakhilalian, M., Mala, H., Sepehrdad, P.: Efficient recursive diffusion layers for block ciphers and hash functions. J. Cryptology 28(2), 240–256 (2015)

    Article  MathSciNet  Google Scholar 

  23. Shibutani, K., Bogdanov, A.: Towards the optimality of Feistel ciphers with substitution-permutation functions. Des. Codes Cryptography 73(2), 667–682 (2014), http://dx.doi.org/10.1007/s10623-014-9970-4

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Canteaut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Canteaut, A., Roué, J. (2015). Differential Attacks Against SPN: A Thorough Analysis. In: El Hajji, S., Nitaj, A., Carlet, C., Souidi, E. (eds) Codes, Cryptology, and Information Security. C2SI 2015. Lecture Notes in Computer Science(), vol 9084. Springer, Cham. https://doi.org/10.1007/978-3-319-18681-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18681-8_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18680-1

  • Online ISBN: 978-3-319-18681-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics