Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-image Segmentation: A Collaborative Approach Based on Binary Partition Trees

  • Conference paper
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2015)

Abstract

Image segmentation is generally performed in a “one image, one algorithm” paradigm. However, it is sometimes required to consider several images of a same scene, or to carry out several (or several occurrences of a same) algorithm(s) to fully capture relevant information. To solve the induced segmentation fusion issues, various strategies have been already investigated for allowing a consensus between several segmentation outputs. This article proposes a contribution to segmentation fusion, with a specific focus on the “n images” part of the paradigm. Its main originality is to act on the segmentation research space, i.e., to work at an earlier stage than standard segmentation fusion approaches. To this end, an algorithmic framework is developed to build a binary partition tree in a collaborative fashion, from several images, thus allowing to obtain a unified hierarchical segmentation space. This framework is, in particular, designed to embed consensus policies inherited from the machine learning domain. Application examples proposed in remote sensing emphasise the potential usefulness of our approach for satellite image processing.

This research was partially funded by the French Agence Nationale de la Recherche (Grant Agreements ANR-10-BLAN-0205 and ANR-12-MONU-0001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Topchy, A., Jain, A.K., Punch, W.: Clustering ensembles: Models of consensus and weak partitions. IEEE TPAMI 27, 1866–1881 (2005)

    Article  Google Scholar 

  2. Salembier, P., Wilkinson, M.H.F.: Connected operators: A review of region-based morphological image processing techniques. IEEE SPM 26, 136–157 (2009)

    Article  Google Scholar 

  3. Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval. IEEE TIP 9, 561–576 (2000)

    Google Scholar 

  4. Rohlfing, T., Maurer Jr., C.R.: Shape-based averaging. IEEE TIP 16, 153–161 (2007)

    MathSciNet  Google Scholar 

  5. Vidal, J., Crespo, J., Maojo, V.: A shape interpolation technique based on inclusion relationships and median sets. IVC 25, 1530–1542 (2007)

    Article  Google Scholar 

  6. Franek, L., Abdala, D.D., Vega-Pons, S., Jiang, X.: Image segmentation fusion using general ensemble clustering methods. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part IV. LNCS, vol. 6495, pp. 373–384. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Mignotte, M.: Segmentation by fusion of histogram-based K-means clusters in different color spaces. IEEE TIP 17, 780–787 (2008)

    MathSciNet  Google Scholar 

  8. Calderero, F., Eugenio, F., Marcello, J., Marqués, F.: Multispectral cooperative partition sequence fusion for joint classification and hierarchical segmentation. IEEE GRSL 9, 1012–1016 (2012)

    Google Scholar 

  9. Wang, H., Zhang, Y., Nie, R., Yang, Y., Peng, B., Li, T.: Bayesian image segmentation fusion. KBS 71, 162–168 (2014)

    Google Scholar 

  10. Chu, C.C., Aggarwal, J.K.: The integration of image segmentation maps using region and edge information. IEEE TPAMI 15, 72–89 (1993)

    Google Scholar 

  11. Cho, K., Meer, P.: Image segmentation from consensus information. CVIU 68, 72–89 (1997)

    Google Scholar 

  12. Angulo, J., Jeulin, D.: Stochastic watershed segmentation. In: ISMM, pp. 265–276 (2007)

    Google Scholar 

  13. Bernard, K., Tarabalka, Y., Angulo, J., Chanussot, J., Benediktsson, J.A.: Spectral-spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach. IEEE TIP 21, 2008–2021 (2012)

    MathSciNet  Google Scholar 

  14. Wattuya, P., Rothaus, K., Praßni, J.S., Jiang, X.: A random walker based approach to combining multiple segmentations. In: ICPR, pp. 1–4 (2008)

    Google Scholar 

  15. USalembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for image and sequence processing. IEEE TIP 7, 555–570 (1998)

    Google Scholar 

  16. Monasse, P., Guichard, F.: Scale-space from a level lines tree. JVCIR 11, 224–236 (2000)

    Google Scholar 

  17. Soille, P.: Constrained connectivity for hierarchical image decomposition and simplification. IEEE TPAMI 30, 1132–1145 (2008)

    Article  Google Scholar 

  18. Vilaplana, V., Marques, F., Salembier, P.: Binary partition trees for object detection. IEEE TIP 17, 2201–2216 (2008)

    MathSciNet  Google Scholar 

  19. Benediktsson, J.A., Bruzzone, L., Chanussot, J., Dalla Mura, M., Salembier, P., Valero, S.: Hierarchical analysis of remote sensing data: Morphological attribute profiles and binary partition trees. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 306–319. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Kurtz, C., Passat, N., Gançarski, P., Puissant, A.: Extraction of complex patterns from multiresolution remote sensing images: A hierarchical top-down methodology. PR 45, 685–706 (2012)

    Google Scholar 

  21. Akcay, H.G., Aksoy, S.: Automatic detection of geospatial objects using multiple hierarchical segmentations. IEEE TGRS 46, 2097–2111 (2008)

    Google Scholar 

  22. Kurtz, C., Naegel, B., Passat, N.: Connected filtering based on multivalued component-trees. IEEE TIP 23, 5152–5164 (2014)

    MathSciNet  Google Scholar 

  23. Alonso-González, A., López-Martínez, C., Salembier, P.: PolSAR time series processing with binary partition trees. IEEE TGRS 52, 3553–3567 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimmy Francky Randrianasoa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Randrianasoa, J.F., Kurtz, C., Desjardin, É., Passat, N. (2015). Multi-image Segmentation: A Collaborative Approach Based on Binary Partition Trees. In: Benediktsson, J., Chanussot, J., Najman, L., Talbot, H. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2015. Lecture Notes in Computer Science(), vol 9082. Springer, Cham. https://doi.org/10.1007/978-3-319-18720-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18720-4_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18719-8

  • Online ISBN: 978-3-319-18720-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics