Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

FPGA Translation of Functional Hippocampal Cultures Structures Using Cellular Neural Networks

  • Conference paper
Artificial Computation in Biology and Medicine (IWINAC 2015)

Abstract

Electric stimulation in neural cultures in neural cultures may be used for creating adjacent physical or logical connections in the connectivity graph following Hebb’s Law modifying the neural responses principal parameters. The created biological structure may be used for computing a certain function, however this achieved structure vanished with time as the stimulation stops. A DTCNN architecture, specifically designed for optimum parallel implementation over dedicated hardware, is proposed to emulate the behavior ans structure of the biological neuronal culture. The FPGA circuit can be used as a permanent model and is also intended to facilitate and speed up further experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, J.A., Rosenfeld, E.: Neurocomputing: Foundations of research. MIT Press, Cambridge (1988)

    Google Scholar 

  2. The Facets Project, http://facets.kip.uni-heidelberg.de/ (accessed March 2013)

  3. Maeda, E., Kuroda, Y., Robinson, H.P., Kawana, A.: Modification of parallel activity elicited by propagating bursts in developing networks of rat cortical neurones. Eur. J. Neurosci. 10(2), 488–496 (1998)

    Article  Google Scholar 

  4. Jimbo, Y., Robinson, H.P., Kawana, A.: Strengthening of synchronized activity by tetanic stimulation in cortical cultures: application of planar electrode arrays. IEEE Trans. Biomed. Eng. 45(11), 1297–1304 (1998)

    Article  Google Scholar 

  5. Jimbo, Y., Tateno, T., Robinson, H.P.C.: Simultaneous induction of pathway specific potetiation and depression in networks of cortical neurons. Biophys. J. 76(2), 670–678 (1999)

    Article  Google Scholar 

  6. Tateno, T., Jimbo, Y.: Activity-dependent enhancement in the reliability of correlated spike timings in cultured cortical neurons. Biol. Cybern. 80(1), 45–55 (1999)

    Article  MATH  Google Scholar 

  7. Shahaf, G., Marom, S.: Learning in networks of cortical neurons. J. Neurosci. 21(22), 8782–8788 (2001)

    Google Scholar 

  8. Ruaro, M.E., Bonifazi, P., Torre, V.: Toward the neurocomputer: image processing and pattern recognition with neuronal cultures. IEEE Trans. Biomed. Eng. 52(3), 371–383 (2005)

    Article  Google Scholar 

  9. Wagenaar, D.A., Pine, J., Potter, S.M.: Searching for plasticity in dissociated cortical cultures on multi-electrode arrays. Journal of Negative Results in Biomedicine 5(16) (2006)

    Google Scholar 

  10. Madhavan, R., Chao, Z.C., Potter, S.M.: Plasticity of recurring spatiotemporal activity patterns in cortical networks. Phys. Biol. 4(3), 181–193 (2007)

    Article  Google Scholar 

  11. Chao, Z.C., Bakkum, D.J., Potter, S.M.: Region-specific network plasticity in simulated and living cortical networks: comparison of the center of activity trajectory (CAT) with other statistics. J. Neural. Eng. 4(3), 294–308 (2007)

    Article  MathSciNet  Google Scholar 

  12. Ide, A.N., Andruska, A., Boehler, M., Wheeler, B.C., Brewer, G.J.: Chronic network stimulation enhances evoked action potentials. J. Neural. Eng. 7(1), 16008 (2010)

    Article  Google Scholar 

  13. Bologna, L.L., Nieus, T., Tedesco, M., Chiappalone, M., Benfenati, F., Martinoia, S.: Low-frequency stimulation enhances burst activity in cortical cultures during development. Neuroscience 165, 692–704 (2010)

    Article  Google Scholar 

  14. Lorente, V., Ferrández, J.M., de la Paz, F., Fernández, E.: Training hippocampal cultures using low-frequency stimulation: Towards Hebbian Learning. In: 8th International Meeting on Substrate-Integrated Microelectrodes Arrays, pp. 90–91 (2012)

    Google Scholar 

  15. Ferrández, J.M., Lorente, V., de la Paz, F., Fernández, E.: Training Biological Neural Cultures: Towards Hebbian Learning. Neurocomputing 114, 3–8 (2013)

    Article  Google Scholar 

  16. Sporns, O., Tononi, G.: Classes of network connetivity and dynamics. Complexity 7, 28–38 (2002)

    Article  MathSciNet  Google Scholar 

  17. Friston, K., Frith, C., Frackowiak, R.: Time-dependent changes in effective connectivity measured with PET. Human Brain Mapping 1, 69–79 (1993)

    Article  Google Scholar 

  18. Chua, L.O., Yang, L.: Cellular Neural Networks: Theory. IEEE Trans. on Circuits and Systems CAS-35(10), 1257–1272 (1988)

    Google Scholar 

  19. Chua, L.O.: The CNN: A brain-like computer Neural Networks. In: IEEE Intern. Joint Conference, vol. 1, pp. 25–29 (2004)

    Google Scholar 

  20. Martínez-Álvarez, J.J., Garrigós-Guerrero, F.J., Toledo-Moreo, F.J., Ferrández-Vicente, J.M.: Using reconfigurable supercomputers and C-to-hardware synthesis for CNN emulation. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2009, Part II. LNCS, vol. 5602, pp. 244–253. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Martínez, J.J., Garrigós, F.J., Villó, I., Toledo, F.J., Ferrández, J.M.: Hardware Acceleration on HPRC of a CNN-based Algorithm for Astronomical Images Reduction. In: Int. Work. on Cellular Nanoscale Networks ans their Applications, pp. 1–5 (2010)

    Google Scholar 

  22. Ferrández, J.M., Bolea, J.A., Ammermüller, J., Normann, R.A., Fernández, E.: A neural network approach for the analysis of multineural recordings in retinal ganglion cells. In: Mira, J. (ed.) IWANN 1999. LNCS, vol. 1607, pp. 289–298. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  23. Toledo, F.J., Martínez, J.J., Garrigós, F.J., Ferrández, J.M.: FPGA implementation of an augmented reality application for visually impaired people. In: Int. Conf. on Field Programmable Logic and Applications, pp. 723–724 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lorente, V., Martínez-Álvarez, J.J., Ferrández-Vicente, J.M., Garrigós, J., Fernández, E., Toledo, J. (2015). FPGA Translation of Functional Hippocampal Cultures Structures Using Cellular Neural Networks. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Artificial Computation in Biology and Medicine. IWINAC 2015. Lecture Notes in Computer Science(), vol 9107. Springer, Cham. https://doi.org/10.1007/978-3-319-18914-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18914-7_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18913-0

  • Online ISBN: 978-3-319-18914-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics