Abstract
Electric stimulation in neural cultures in neural cultures may be used for creating adjacent physical or logical connections in the connectivity graph following Hebb’s Law modifying the neural responses principal parameters. The created biological structure may be used for computing a certain function, however this achieved structure vanished with time as the stimulation stops. A DTCNN architecture, specifically designed for optimum parallel implementation over dedicated hardware, is proposed to emulate the behavior ans structure of the biological neuronal culture. The FPGA circuit can be used as a permanent model and is also intended to facilitate and speed up further experimentation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anderson, J.A., Rosenfeld, E.: Neurocomputing: Foundations of research. MIT Press, Cambridge (1988)
The Facets Project, http://facets.kip.uni-heidelberg.de/ (accessed March 2013)
Maeda, E., Kuroda, Y., Robinson, H.P., Kawana, A.: Modification of parallel activity elicited by propagating bursts in developing networks of rat cortical neurones. Eur. J. Neurosci. 10(2), 488–496 (1998)
Jimbo, Y., Robinson, H.P., Kawana, A.: Strengthening of synchronized activity by tetanic stimulation in cortical cultures: application of planar electrode arrays. IEEE Trans. Biomed. Eng. 45(11), 1297–1304 (1998)
Jimbo, Y., Tateno, T., Robinson, H.P.C.: Simultaneous induction of pathway specific potetiation and depression in networks of cortical neurons. Biophys. J. 76(2), 670–678 (1999)
Tateno, T., Jimbo, Y.: Activity-dependent enhancement in the reliability of correlated spike timings in cultured cortical neurons. Biol. Cybern. 80(1), 45–55 (1999)
Shahaf, G., Marom, S.: Learning in networks of cortical neurons. J. Neurosci. 21(22), 8782–8788 (2001)
Ruaro, M.E., Bonifazi, P., Torre, V.: Toward the neurocomputer: image processing and pattern recognition with neuronal cultures. IEEE Trans. Biomed. Eng. 52(3), 371–383 (2005)
Wagenaar, D.A., Pine, J., Potter, S.M.: Searching for plasticity in dissociated cortical cultures on multi-electrode arrays. Journal of Negative Results in Biomedicine 5(16) (2006)
Madhavan, R., Chao, Z.C., Potter, S.M.: Plasticity of recurring spatiotemporal activity patterns in cortical networks. Phys. Biol. 4(3), 181–193 (2007)
Chao, Z.C., Bakkum, D.J., Potter, S.M.: Region-specific network plasticity in simulated and living cortical networks: comparison of the center of activity trajectory (CAT) with other statistics. J. Neural. Eng. 4(3), 294–308 (2007)
Ide, A.N., Andruska, A., Boehler, M., Wheeler, B.C., Brewer, G.J.: Chronic network stimulation enhances evoked action potentials. J. Neural. Eng. 7(1), 16008 (2010)
Bologna, L.L., Nieus, T., Tedesco, M., Chiappalone, M., Benfenati, F., Martinoia, S.: Low-frequency stimulation enhances burst activity in cortical cultures during development. Neuroscience 165, 692–704 (2010)
Lorente, V., Ferrández, J.M., de la Paz, F., Fernández, E.: Training hippocampal cultures using low-frequency stimulation: Towards Hebbian Learning. In: 8th International Meeting on Substrate-Integrated Microelectrodes Arrays, pp. 90–91 (2012)
Ferrández, J.M., Lorente, V., de la Paz, F., Fernández, E.: Training Biological Neural Cultures: Towards Hebbian Learning. Neurocomputing 114, 3–8 (2013)
Sporns, O., Tononi, G.: Classes of network connetivity and dynamics. Complexity 7, 28–38 (2002)
Friston, K., Frith, C., Frackowiak, R.: Time-dependent changes in effective connectivity measured with PET. Human Brain Mapping 1, 69–79 (1993)
Chua, L.O., Yang, L.: Cellular Neural Networks: Theory. IEEE Trans. on Circuits and Systems CAS-35(10), 1257–1272 (1988)
Chua, L.O.: The CNN: A brain-like computer Neural Networks. In: IEEE Intern. Joint Conference, vol. 1, pp. 25–29 (2004)
Martínez-Álvarez, J.J., Garrigós-Guerrero, F.J., Toledo-Moreo, F.J., Ferrández-Vicente, J.M.: Using reconfigurable supercomputers and C-to-hardware synthesis for CNN emulation. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2009, Part II. LNCS, vol. 5602, pp. 244–253. Springer, Heidelberg (2009)
Martínez, J.J., Garrigós, F.J., Villó, I., Toledo, F.J., Ferrández, J.M.: Hardware Acceleration on HPRC of a CNN-based Algorithm for Astronomical Images Reduction. In: Int. Work. on Cellular Nanoscale Networks ans their Applications, pp. 1–5 (2010)
Ferrández, J.M., Bolea, J.A., Ammermüller, J., Normann, R.A., Fernández, E.: A neural network approach for the analysis of multineural recordings in retinal ganglion cells. In: Mira, J. (ed.) IWANN 1999. LNCS, vol. 1607, pp. 289–298. Springer, Heidelberg (1999)
Toledo, F.J., Martínez, J.J., Garrigós, F.J., Ferrández, J.M.: FPGA implementation of an augmented reality application for visually impaired people. In: Int. Conf. on Field Programmable Logic and Applications, pp. 723–724 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Lorente, V., Martínez-Álvarez, J.J., Ferrández-Vicente, J.M., Garrigós, J., Fernández, E., Toledo, J. (2015). FPGA Translation of Functional Hippocampal Cultures Structures Using Cellular Neural Networks. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Artificial Computation in Biology and Medicine. IWINAC 2015. Lecture Notes in Computer Science(), vol 9107. Springer, Cham. https://doi.org/10.1007/978-3-319-18914-7_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-18914-7_24
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18913-0
Online ISBN: 978-3-319-18914-7
eBook Packages: Computer ScienceComputer Science (R0)