Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Argument-Dependent Approach to Determining the Weights of IFOWA Operator

  • Conference paper
  • First Online:
Knowledge, Information and Creativity Support Systems: Recent Trends, Advances and Solutions

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 364))

  • 894 Accesses

Abstract

Based on entropy and similarity measure of intuitionistic fuzzy sets, a novel approach is proposed to determine weights of the IFOWA operator in this paper. Then, an intuitionistic fuzzy dependent OWA (IFDOWA) operator is defined and applied to handling multi-attribute group decision making problem with intuitionistic fuzzy information. Finally, an example is given to demonstrate the rationality and validity of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, B.S.: Preference relation approach for obtain OWA operators weights. Int. J. Approximate Reasoning 47, 166–178 (2008)

    Article  MATH  Google Scholar 

  2. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atanassov, K.: Intuitionistic Fuzzy Sets: Theory and Applications. Physica-Verlag, Heidelberg (1999)

    Book  MATH  Google Scholar 

  4. Burillo, P., Bustince, H.: Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets Syst. 78, 305–316 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, S.M., Tan, J.M.: Handling multi-criteria fuzzy decision making problems based on vague set theory. Fuzzy Sets Syst. 67(2), 163–172 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Emrouznejad, A., Amin, G.: Improving minimax disparity model to determine the OWA operator weights. Inf. Sci. 180, 1477–1485 (2010)

    Article  MATH  Google Scholar 

  7. Filev, D.P., Yager, R.R.: On the issue of obtaining OWA operator weights. Fuzzy Sets Syst. 94, 157–169 (1998)

    Article  MathSciNet  Google Scholar 

  8. Hong, D.H., Choi, C.H.: Multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets Syst. 114, 103–113 (2000)

    Article  MATH  Google Scholar 

  9. Liang, X., Wei, C.P., Chen, Z.M.: An intuitionistic fuzzy weighted OWA operator and its application. Int. J. Mach. Learn. Cybern. (2013). doi:10.1007/s13042-012-0147-z

    Google Scholar 

  10. Li, D.F., Cheng, C.T.: New similarity measure of intuitionistic fuzzy sets and application to pattern recongnitions. Pattern Recogn. Lett. 23, 221–225 (2002)

    Article  MATH  Google Scholar 

  11. Ngwenyama, O., Bryson, N.: Eliciting and mapping qualitative preferences to numeric rankings in group decision making. Eur. J. Oper. Res. 116, 487–497 (1999)

    Article  MATH  Google Scholar 

  12. O’Hagan, M.: Aggregating template rule antecedents in real-time expert systems with fuzzy set. In: Proceedings of 22nd Annual IEEE Asilomar Conference on Signals, Systems and Computers Pacific Grove, pp. 681–689, CA (1988)

    Google Scholar 

  13. Szmidt, E., Kacprzyk, J.: Entropy for intuitionistic fuzzy sets. Fuzzy Sets Syst. 118(3), 467–477 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, Y., Lei, Y.J.: A technique for constructing intuitionistic fuzzy entropy. Control Decis. 22(12), 1390–1394 (2007)

    MATH  Google Scholar 

  15. Wang, Y.M., Parkan, C.: A minimax disparity approach for obtain OWA operator weights. Inf. Sci. 175, 20–29 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wei, C.P., Tang, X.J., Bi, Y.: Intuitionistic fuzzy dependent OWA operator and its application. In: Skulimowski, A.M.J. (ed.) Looking into the Future of Creativity and Decision Support Systems: Proceedings of the 8th International Conference on Knowledge, Information and Creativity Support Systems, Krakow, Poland, 79, Nov 2013, Advances in Decision Sciences and Future Studies, vol. 2, pp. 298–309. Progress & Business Publishers, Krakow (2013)

    Google Scholar 

  17. Wei, C.P., Tang, X.J.: An intuitionistic fuzzy group decision making approach based on entropy and similarity measures. Int. J. Inf. Technol. Decis. Making 10(6), 1111–1130 (2011)

    Article  MATH  Google Scholar 

  18. Wei, C.P., Wang, P.: Entropy, similarity measure of interval-valued intuitionistic fuzzy sets and their applications. Inf. Sci. 181(19), 4273–4286 (2011)

    Article  MATH  Google Scholar 

  19. Xia, M.M., Xu, Z.S.: Some new similarity measures for intuitionistic fuzzy values and their application in group decision making. J. Syst. Sci. Syst. Eng. 19(4), 430–452 (2011)

    Article  Google Scholar 

  20. Xu, Z.S.: An overview of methods for determining OWA weights. Int. J. Intell. Syst. 20(8), 843–865 (2005)

    Article  MATH  Google Scholar 

  21. Xu, Z.S.: Dependent OWA operator. In: Torra, V., Narukawa, Y., Valls, A., Domin-goFerrer, J. (eds.) MDAI 2006, LNCS (LNAI), vol. 3885, pp. 172–178. Springer, Heidelberg (2006)

    Google Scholar 

  22. Xu, Z.S.: Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 15, 1179–1187 (2007)

    Article  Google Scholar 

  23. Xu, Z.S., Da, Q.L.: The uncertain OWA operator. Int. J. Intell. Syst. 17, 569–575 (2002)

    Article  MATH  Google Scholar 

  24. Xu, Z.S., Yager, R.R.: Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. General Syst. 35(4), 417–433 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yager, R.R., Kacprczyk, K.: The Ordered Weighted Averaging Operators: Theory and Applications, pp. 275–294. Kluwer Academic Publishers Norwell, MA, USA (1997)

    Google Scholar 

  26. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18, 183–190 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yager, R.R.: Families of OWA operators. Fuzzy Sets Syst. 59, 125–148 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yager, R.R.: Quantifer guided aggregation using OWA operators. Int. J. Intell. Syst. 11(1), 49–73 (1996)

    Article  Google Scholar 

  29. Yager, R.R., Filev, D.P.: Parameterized and-like and or-like OWA operators. Int. J. General Syst. 22(3), 297–316 (1994)

    Article  Google Scholar 

  30. Zadeh, A.: A computational approach to fuzzy quantifiers in natural languages. Comput. Math. Appl. 9, 149–184 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zadeh, A.: A computational theory of dispositions. Int. J. Intell. Syst. 2, 39–64 (1987)

    MATH  Google Scholar 

  32. Zhao, N., Wei, C.P., Xu, Z.S.: Sensitivity analysis of multiple criteria decision making method based on the OWA operator. Int. J. Intell. Syst. 28(11), 1124–1139 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous referees for their insightful and valuable suggestions to our original submission to the 8th International Conference on Knowledge,Information, and Creativity Support Systems (KICSS2013) [16]. The authors also owe gratitude to the on-site participants and the editors of proceedings for their comments for the modification of the conference paper into an extended and improved manuscript. The work is supported by the Natural Science Foundation of China (71171187, 71371107), the National Basic Research Program of China (2010CB731405), and Science Foundation of Shandong Province (ZR2013GM011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xijin Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wei, C., Tang, X. (2016). An Argument-Dependent Approach to Determining the Weights of IFOWA Operator. In: Skulimowski, A., Kacprzyk, J. (eds) Knowledge, Information and Creativity Support Systems: Recent Trends, Advances and Solutions. Advances in Intelligent Systems and Computing, vol 364. Springer, Cham. https://doi.org/10.1007/978-3-319-19090-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19090-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19089-1

  • Online ISBN: 978-3-319-19090-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics