Abstract
The field of image forensics is expanding rapidly. Many passive image tamper detection techniques have been presented. Some of these techniques use feature extraction methods for tamper detection and localization. This work is based on extracting Maximally Stable Extremal Regions (MSER) features for cloning detection, followed by k-means clustering for cloning localization. Then for comparison purposes, we implement the same approach using Speeded Up Robust Features (SURF) and Scale-Invariant Feature Transform (SIFT). Experimental results show that we can detect and localize cloning in tampered images with an accuracy reaching 97 % using MSER features. The usability and efficacy of our approach is verified by comparing with recent state-of-the-art approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amerini, I., Ballan, L., Caldelli, R., Bimbo, A.D., Serra, G.: A sift-based forensic method for copy-move attack detection and transformation recovery. IEEE Trans. Inf. Forensics Secur. 6(3), 1099–1110 (2011)
Amerini, I., Ballan, L., Caldelli, R., Bimbo, A.D., Tongo, L.D., Serra, G.: Copy-move forgery detection and localization by means of robust clustering with j-linkage. Signal Process. Image Commun. 28, 659–669 (2013)
Bay, H., Tuytelaars, T., van Gool, L.: Surf: speed up robust features. In: Proceedings of Computer Vision-ECCV, pp. 404–417 (2006)
Shivakumar, B.L., Baboo, L.D.S.: Detection of region duplication forgery in digital images using surf. Int. J. Comput. Sci. Issues 8(4), 1 199–205 (2011)
Bo, X., Junwen, W., Guangjie, L., Yuewei, D.: Image copy-move forgery detection based on surf. In: International Conference on Multimedia Information Networking and Security (2010)
Christlein, V., Riess, C., Jordan, J., Angelopoulou, E.: An evaluation of popular copy-move forgery detection approaches. IEEE Trans. Inf. Forensics Secur. 7(6), 1841–1854 (2012)
Davarzani, R., Yaghmaie, K., Mozaffari, S., Tapak, M.: Copy-move forgery detection using multiresolution local binary patterns. Forensic Sci. Int. 231, 61–72 (2013)
Kimmel, R., Zhang, C., Bronstein, A., Bronstein, M.: Are MSER features really interesting? IEEE Trans. PAMI 33(11), 2316–2320 (2010)
Li, L., Li, S., Zhu, H., Wu, X.: Detecting copy-move forgery under affine transforms for image forensics. Comput. Electr. Eng. 40(6), 1951–1956 (2013)
Lowe, D.G.: Distinctive image feature from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Kadir, T., Gool, L.V.: A comparison of affine region detectors. Int. J. Comput. Vis. 65, 43–72 (2005)
Oh, I.-S., Lee, J., Majumder, A.: Multi-scale image segmentation using MSER. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013, Part II. LNCS, vol. 8048, pp. 201–208. Springer, Heidelberg (2013)
Okade, M., Biswas, P.K.: Video stabilization using maximally stable extremal region features. Multimedia Tools Appl. 68(3), 947–968 (2012)
Ryu, S.J., Kirchner, M., Lee, M.J., Lee, H.K.: Rotation invariant localization of duplicated image regions based on Zernike moments. IEEE Trans. Inf. Forensics Secur. 8(8), 1355–1370 (2013)
Ryu, S.-J., Lee, M.-J., Lee, H.-K.: Detection of copy-rotate-move forgery using Zernike moments. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 51–65. Springer, Heidelberg (2010)
YunJie, W., Yu, D., HaiBin, D., LinNa, Z.: Dual tree complex wavelet transform approach to copy-rotate-move forgery detection. Inf. Sci. 57(1), 1–12 (2014)
Zhao, J., Zhao, W.: Passive forensic for region duplication image forgery based on harris feature points and local binary patterns. Sci. World J. 2013, 1 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Alfraih, A.S., Briffa, J.A., Wesemeyer, S. (2015). Cloning Localization Based on Feature Extraction and K-means Clustering. In: Shi, YQ., Kim, H., Pérez-González, F., Yang, CN. (eds) Digital-Forensics and Watermarking. IWDW 2014. Lecture Notes in Computer Science(), vol 9023. Springer, Cham. https://doi.org/10.1007/978-3-319-19321-2_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-19321-2_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19320-5
Online ISBN: 978-3-319-19321-2
eBook Packages: Computer ScienceComputer Science (R0)