Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Filtering of Spontaneous and Low Intensity Emotions in Educational Contexts

  • Conference paper
  • First Online:
Artificial Intelligence in Education (AIED 2015)

Abstract

Affect detection is a challenging problem, even more in educational contexts, where emotions are spontaneous and usually subtle. In this paper, we propose a two-stage detection approach based on an initial binary discretization followed by a specific emotion prediction stage. The binary classification method uses several distinct sources of information to detect and filter relevant time slots from an affective point of view. An accuracy close to 75% at detecting whether the learner has felt an educationally relevant emotion on 20 second time slots has been obtained. These slots can then be further analyzed by a second classifier, to determine the specific user emotion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Picard, R.W., Papert, S., Bender, W., Blumberg, B., Breazeal, C., Cavallo, D., Machover, T., Resnick, M., Roy, D., Strohecker, C.: Affective learning—a manifesto. BT Technol. J. 22, 253–269 (2004)

    Article  Google Scholar 

  2. Saneiro, M., Santos, O.C., Salmeron-Majadas, S., Boticario, J.G.: Towards Emotion Detection in Educational Scenarios from Facial Expressions and Body Movements through Multimodal Approaches. Sci. World J. 2014, e484873 (2014)

    Article  Google Scholar 

  3. Santos, O.C., Salmeron-Majadas, S., Boticario, J.G.: Emotions Detection from Math Exercises by Combining Several Data Sources. In: Lane, H., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS, vol. 7926, pp. 742–745. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Salmeron-Majadas, S., Santos, O.C., Boticario, J.G.: An Evaluation of Mouse and Keyboard Interaction Indicators towards Non-intrusive and Low Cost Affective Modeling in an Educational Context. Procedia Comput. Sci. 35, 691–700 (2014)

    Google Scholar 

  5. Arevalillo-Herráez, M., Arnau, D., Marco-Giménez, L.: Domain-specific knowledge representation and inference engine for an intelligent tutoring system. Knowl.-Based Syst. 49, 97–105 (2013)

    Article  Google Scholar 

  6. Ayesh, A., Arevalillo-Herraez, M., Ferri, F.J.: Cognitive reasoning and inferences through psychologically based personalised modelling of emotions using associative classifiers. 2014 IEEE 13th International Conference on Cognitive Informatics Cognitive Computing (ICCI*CC). pp. 67–72 (2014).

    Google Scholar 

  7. Andreassi, J.L.: Psychophysiology: Human behavior and physiological response, 4th edn. Lawrence Erlbaum Associates Publishers, Mahwah (2000)

    Google Scholar 

  8. D’Mello, S.K.: Emotional rollercoasters: day differences in affect incidence during learning. In: The Twenty-Seventh International Flairs Conference (2014)

    Google Scholar 

  9. Blanchard, N., Bixler, R., Joyce, T., D’Mello, S.: Automated Physiological-Based Detection of Mind Wandering during Learning. In: Trausan-Matu, S., Boyer, K.E., Crosby, M., Panourgia, K. (eds.) ITS 2014. LNCS, vol. 8474, pp. 55–60. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  10. Jraidi, I., ne, Chaouachi, M., Frasson, C.: A Hierarchical Probabilistic Framework for Recognizing Learners’ Interaction Experience Trends and Emotions. Adv. Hum.-Comput. Interact. 2014, e632630 (2014)

    Google Scholar 

  11. Novak, D., Mihelj, M., Munih, M.: A survey of methods for data fusion and system adaptation using autonomic nervous system responses in physiological computing. Interact. Comput. 24, 154–172 (2012)

    Article  Google Scholar 

  12. Aldao, A.: The Future of Emotion Regulation Research Capturing Context. Perspect. Psychol. Sci. 8, 155–172 (2013)

    Article  Google Scholar 

  13. Ekman, P., Friesen, W.V.: Manual for the Facial Action Coding System. Consulting Psychologists Press, Palo Alto, Calif, USA

    Google Scholar 

  14. Szwoch, M.: FEEDB: A multimodal database of facial expressions and emotions. In: 2013 The 6th International Conference on Human System Interaction (HSI), pp. 524–531 (2013)

    Google Scholar 

  15. Ioannou, S.V., Raouzaiou, A.T., Tzouvaras, V.A., Mailis, T.P., Karpouzis, K.C., Kollias, S.D.: Emotion recognition through facial expression analysis based on a neurofuzzy network. Neural Netw. 18, 423–435 (2005)

    Article  Google Scholar 

  16. Afzal, S., Robinson, P.: Designing for Automatic Affect Inference in Learning Environments. Educ. Technol. Soc. 14, 21–34 (2011)

    Google Scholar 

  17. D’mello, S., Graesser, A.: AutoTutor and Affective Autotutor: Learning by Talking with Cognitively and Emotionally Intelligent Computers That Talk Back. ACM Trans Interact Intell Syst. 2, 23:1–23:39 (2013)

    Google Scholar 

  18. Bahreini, K., Nadolski, R., Westera, W.: Towards multimodal emotion recognition in e-learning environments. Interact. Learn. Environ. 0, 1–16 (2014)

    Google Scholar 

  19. Felipe, D.A.M., Gutierrez, K.I.N., Quiros, E.C.M., Vea, L.A.: Towards the Development of Intelligent Agent for Novice C/C++ Programmers through Affective Analysis of Event Logs. Proc. Int. MultiConference Eng. Comput. Sci. 1 (2012)

    Google Scholar 

  20. Arnau, D., Arevalillo-Herráez, M., Puig, L., González-Calero, J.A.: Fundamentals of the design and the operation of an intelligent tutoring system for the learning of the arithmetical and algebraic way of solving word problems. Comput. Educ. 63, 119–130 (2013)

    Article  Google Scholar 

  21. Más, M.A.M., Alonso, Á.V.: Validación de una Escala de Motivación de Logro. Psicothema 10, 333–351 (1998)

    Google Scholar 

  22. Bradley, M.M., Lang, P.J.: Measuring emotion: the self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry. 25, 49–59 (1994)

    Article  Google Scholar 

  23. Porayska-Pomsta, K., Mavrikis, M., Mello, S., Conati, C., Pomsta, K.: Knowledge elicitation methods for affect modelling in education. Int. J. Artif. Intell. Educ. 22, 107–140 (2013)

    Google Scholar 

  24. DMello, S.K., Dowell, N., Graesser, A.: Unimodal and Multimodal Human Perceptionof Naturalistic Non-Basic Affective Statesduring Human-Computer Interactions. IEEE Trans. Affect. Comput. 4, 452–465 (2013)

    Article  Google Scholar 

  25. Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39, 1161–1178 (1980)

    Article  Google Scholar 

  26. Schröder, M., Baggia, P., Burkhardt, F., Pelachaud, C., Peter, C., Zovato, E.: EmotionML – An Upcoming Standard for Representing Emotions and Related States. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C. (eds.) ACII 2011, Part I. LNCS, vol. 6974, pp. 316–325. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  27. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, Second Edition. Morgan Kaufmann (2005)

    Google Scholar 

  28. Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. J Mach Learn Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  29. Mukhopadhyay, S.C.: Wearable Sensors for Human Activity Monitoring: A Review. IEEE Sens. J. 15, 1321–1330 (2015)

    Article  Google Scholar 

  30. Koo, H.R., Lee, Y.-J., Gi, S., Khang, S., Lee, J.H., Lee, J.-H., Lim, M.-G., Park, H.-J., Lee, J.-W.: The Effect of Textile-Based Inductive Coil Sensor Positions for Heart Rate Monitoring. J. Med. Syst. 38, 1–12 (2014)

    Article  Google Scholar 

  31. Suau, X., Ruiz-Hidalgo, J., Casas, J.R.: Real-Time Head and Hand Tracking Based on 2.5D Data. IEEE Trans. Multimed. 14, 575–585 (2012)

    Article  Google Scholar 

  32. Santos, O.C., Boticario, J.G.: Practical guidelines for designing and evaluating educationally oriented recommendations. Comput. Educ. 81, 354–374 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Salmeron-Majadas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Salmeron-Majadas, S. et al. (2015). Filtering of Spontaneous and Low Intensity Emotions in Educational Contexts. In: Conati, C., Heffernan, N., Mitrovic, A., Verdejo, M. (eds) Artificial Intelligence in Education. AIED 2015. Lecture Notes in Computer Science(), vol 9112. Springer, Cham. https://doi.org/10.1007/978-3-319-19773-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19773-9_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19772-2

  • Online ISBN: 978-3-319-19773-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics