Abstract
Recently, Yamamoto presented a new method for the conversion from regular expressions (REs) to non-deterministic finite automata (NFA) based on the Thompson \(\varepsilon \)-NFA (\(\mathcal {A}_\mathsf {T}\)). The \(\mathcal {A}_\mathsf {T}\) automaton has two quotients discussed: the suffix automaton \(\mathcal {A}_\mathsf {suf}\) and the prefix automaton, \(\mathcal {A}_\mathsf {pre}\). Eliminating \(\varepsilon \)-transitions in \(\mathcal {A}_\mathsf {T}\), the Glushkov automaton (\(\mathcal {A}_{\mathsf {pos}}\)) is obtained. Thus, it is easy to see that \(\mathcal {A}_\mathsf {suf}\) and the partial derivative automaton (\(\mathcal {A}_\mathsf {pd})\) are the same. In this paper, we characterise the \(\mathcal {A}_\mathsf {pre}\) automaton as a solution of a system of left RE equations and express it as a quotient of \(\mathcal {A}_{\mathsf {pos}}\) by a specific left-invariant equivalence relation. We define and characterise the right-partial derivative automaton (\(\overleftarrow{\mathcal {A}}_\mathsf {pd}\)). Finally, we study the average size of all these constructions both experimentally and from an analytic combinatorics point of view.
This work was partially funded by the European Regional Development Fund through the programme COMPETE and by the Portuguese Government through the FCT under project UID/MAT/00144/2013 and project FCOMP-01-0124-FEDER-020486. Eva Maia was also funded by FCT grant SFRH/BD/78392/2011.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton constructions. Theor. Comput. Sci. 155(2), 291–319 (1996)
Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average size of Glushkov and partial derivative automata. Int. J. Found. Comput. Sci. 23(5), 969–984 (2012)
Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average state complexity of partial derivative automata. Int. J. Found. Comput. Sci. 22(7), 1593–1606 (2011)
Champarnaud, J.M., Dubernard, J.P., Jeanne, H., Mignot, L.: Two-sided derivatives for regular expressions and for hairpin expressions. In: Dediu, A.H., Martín-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 202–213. Springer, Heidelberg (2013)
Champarnaud, J.M., Ziadi, D.: From Mirkin’s prebases to Antimirov’s word partial derivatives. Fundam. Inform. 45(3), 195–205 (2001)
Champarnaud, J.M., Ziadi, D.: Canonical derivatives, partial derivatives and finite automaton constructions. Theor. Comput. Sci. 289(1), 137–163 (2002)
Flajolet, P., Sedgewick, R.: Analytic Combinatorics. CUP, Cambridge (2008)
Giammarresi, D., Ponty, J.L., Wood, D.: The Glushkov and Thompson constructions: a synthesis (1998) (unpublished manuscript)
Glushkov, V.M.: The abstract theory of automata. Russ. Math. Surv. 16(5), 1–53 (1961)
Ilie, L., Yu, S.: Follow automata. Inf. Comput. 186(1), 140–162 (2003)
Ko, S., Han, Y.: Left is better than right for reducing nondeterminism of NFAs. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 238–251. Springer, Heidelberg (2014)
Maia, E., Moreira, N., Reis, R.: Partial derivative and position bisimilarity automata. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 264–277. Springer, Heidelberg (2014)
Mirkin, B.: An algorithm for constructing a base in a language of regular expressions. Eng. Cybern. 5, 110–116 (1966)
Nicaud, C.: On the average size of Glushkov’s automata. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 626–637. Springer, Heidelberg (2009)
Thompson, K.: Regular expression search algorithm. Com. ACM 11(6), 410–422 (1968)
Yamamoto, H.: A new finite automaton construction for regular expressions. In: Bensch, S., Freund, R., Otto, F. (eds.) NCMA, pp. 249–264. Österreichische Computer Gesellschaft, Kassel (2014). books@ocg.at
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Maia, E., Moreira, N., Reis, R. (2015). Prefix and Right-Partial Derivative Automata. In: Beckmann, A., Mitrana, V., Soskova, M. (eds) Evolving Computability. CiE 2015. Lecture Notes in Computer Science(), vol 9136. Springer, Cham. https://doi.org/10.1007/978-3-319-20028-6_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-20028-6_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-20027-9
Online ISBN: 978-3-319-20028-6
eBook Packages: Computer ScienceComputer Science (R0)