Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robust and Effective Malware Detection Through Quantitative Data Flow Graph Metrics

  • Conference paper
  • First Online:
Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA 2015)

Abstract

We present a novel malware detection approach based on metrics over quantitative data flow graphs. Quantitative data flow graphs (QDFGs) model process behavior by interpreting issued system calls as aggregations of quantifiable data flows. Due to the high abstraction level we consider QDFG metric based detection more robust against typical behavior obfuscation like bogus call injection or call reordering than other common behavioral models that base on raw system calls. We support this claim with experiments on obfuscated malware logs and demonstrate the superior obfuscation robustness in comparison to detection using n-grams. Our evaluations on a large and diverse data set consisting of about 7000 malware and 500 goodware samples show an average detection rate of 98.01 % and a false positive rate of 0.48 %. Moreover, we show that our approach is able to detect new malware (i.e. samples from malware families not included in the training set) and that the consideration of quantities in itself significantly improves detection precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    By examining the reachability graph associated with a node, it is possible for analysts to investigate the root cause of an infection.

  2. 2.

    http://www.cuckoosandbox.org/.

References

  1. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.: Automated classification and analysis of internet malware. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 178–197. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Banescu, S., Wüchner, T., Guggenmos, M., Ochoa, M., Pretschner, A.: FEEBO: an empirical evaluation framework for malware behavior obfuscation. CoRR, arXiv:1502.03245 (2015)

  3. Bhatkar, S., Chaturvedi, A., Sekar, R.: Dataflow anomaly detection. In: S&P, pp. 15. IEEE (2006)

    Google Scholar 

  4. Borello, J.-M., Me, L.: Code obfuscation techniques for metamorphic viruses. J. Comput. Virol. 4, 211–220 (2008)

    Article  Google Scholar 

  5. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001)

    Article  MATH  Google Scholar 

  6. Canali, D., Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E.: A quantitative study of accuracy in system call-based malware detection. In: ISSTA. ACM (2012)

    Google Scholar 

  7. Cavallaro, L., Sekar, R.: Taint-enhanced anomaly detection. In: Jajodia, S., Mazumdar, C. (eds.) ICISS 2011. LNCS, vol. 7093, pp. 160–174. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16(1), 321–357 (2002)

    MATH  Google Scholar 

  9. Christodorescu, M., Jha, S., Kruegel, C.: Mining specifications of malicious behavior. In: India Software Engineering Conference, pp. 5–14 (2008)

    Google Scholar 

  10. Christodorescu, M., Jha, S., Seshia, S., Song, D., Bryant, R.: Semantics-aware malware detection. In: S&P 2005, pp. 32–46 (2005)

    Google Scholar 

  11. Forrest, S., Hofmeyr, S., Somayaji, A., Longstaff, T.: A sense of self for Unix processes. In: S&P, pp. 120–128 (1996)

    Google Scholar 

  12. Fredrikson, M., Christodorescu, M., Jha, S.: Dynamic behavior matching: a complexity analysis and new approximation algorithms. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 252–267. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Fredrikson, M., Jha, S., Christodorescu, M., Sailer, R., Yan, X.: Synthesizing near-optimal malware specifications from suspicious behaviors. In: S&P, pp. 45–60. IEEE (2010)

    Google Scholar 

  14. Ghosh, A.K., Schwartzbard, A., Schatz, M.: Learning program behavior profiles for intrusion detection. In: Workshop on Intrusion Detection and Network Monitoring, p. 6 (1999)

    Google Scholar 

  15. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  16. Jang, J., Woo, J., Yun, J., Kim, H.K.: Mal-netminer: malware classification based on social network analysis of call graph. In: WWW (2014)

    Google Scholar 

  17. Kirda, E., Kruegel, C., Banks, G., Vigna, G., Kemmerer, R.A.: Behavior-based spyware detection. In: USENIX (2006)

    Google Scholar 

  18. Kolbitsch, C., Comparetti, P.M., Kruegel, C., Kirda, E., Zhou, X., Wang, X.: Effective and efficient malware detection at the end host. In: USENIX, pp. 351–366 (2009)

    Google Scholar 

  19. Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E.: Accessminer: using system-centric models for malware protection. In: CCS, pp. 399–412 (2010)

    Google Scholar 

  20. Lee, J., Jeong, K., Lee, H.: Detecting metamorphic malwares using code graphs. In: SAC (2010)

    Google Scholar 

  21. Lee, W., Stolfo, S.J., Chan, P.K.: Learning patterns from unix process execution traces for intrusion detection. In: Workshop on AI Approaches to Fraud Detection and Risk Management, pp. 50–56 (1997)

    Google Scholar 

  22. Mao, W., Cai, Z., Guan, X., Towsley, D.: Centrality metrics of importance in access behaviors and malware detections. In: ACSAC. ACM (2014)

    Google Scholar 

  23. Milea, N.A., Khoo, S.C.: Nort: runtime anomaly-based monitoring of malicious behavior for windows, pp. 115–130 (2012)

    Google Scholar 

  24. Nappa, A., Rafique, M.Z., Caballero, J.: Driving in the cloud: an analysis of drive-by download operations and abuse reporting. In: Rieck, K., Stewin, P., Seifert, J.-P. (eds.) DIMVA 2013. LNCS, vol. 7967, pp. 1–20. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Okamoto, K., Chen, W., Li, X.-Y.: Ranking of closeness centrality for large-scale social networks. In: Preparata, F.P., Wu, X., Yin, J. (eds.) FAW 2008. LNCS, vol. 5059, pp. 186–195. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Park, Y., Reeves, D.S., Stamp, M.: Deriving common malware behavior through graph clustering. Comput. Secur. 39, 419–430 (2013)

    Article  Google Scholar 

  27. Preda, M., Christodorescu, M., Jha, S., Debray, S.: A semantics-based approach to malware detection. ACM SIGPLAN Notices, pp. 1–12 (2007)

    Google Scholar 

  28. Rieck, K., Holz, T., Willems, C., Düssel, P., Laskov, P.: Learning and classification of malware behavior. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp. 108–125. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  29. Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behavior using machine learning. J. Comput. Secur. 19, 639–668 (2011)

    Google Scholar 

  30. Sharif, M.I., Lanzi, A., Giffin, J.T., Lee, W.: Impeding malware analysis using conditional code obfuscation. In: NDSS (2008)

    Google Scholar 

  31. Wressnegger, C., Schwenk, G., Arp, D., Rieck, K.: A close look on n-grams in intrusion detection: anomaly detection vs. classification. In: Workshop on Artificial Intelligence and Security, pp. 67–76 (2013)

    Google Scholar 

  32. Wüchner, T., Ochoa, M., Pretschner, A.: Malware detection with quantitative data flow graphs. In: ASIACCS (2014)

    Google Scholar 

  33. Wüchner, T., Pretschner, A.: Data loss prevention based on data-driven usage control. In: ISSRE, pp. 151–160, November 2012

    Google Scholar 

  34. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: capturing system-wide information flow for malware detection and analysis. In: CCS, pp. 116–127 (2007)

    Google Scholar 

  35. You, I., Yim, K.: Malware obfuscation techniques: a brief survey. In: BWCCA, pp. 297–300 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Wüchner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wüchner, T., Ochoa, M., Pretschner, A. (2015). Robust and Effective Malware Detection Through Quantitative Data Flow Graph Metrics. In: Almgren, M., Gulisano, V., Maggi, F. (eds) Detection of Intrusions and Malware, and Vulnerability Assessment. DIMVA 2015. Lecture Notes in Computer Science(), vol 9148. Springer, Cham. https://doi.org/10.1007/978-3-319-20550-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20550-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20549-6

  • Online ISBN: 978-3-319-20550-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics