Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Coalition Formation Game Theory-Based Approach for Detecting Communities in Multi-relational Networks

  • Conference paper
  • First Online:
Web-Age Information Management (WAIM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9098))

Included in the following conference series:

Abstract

Community detection is a very important task in social network analysis. Most existing community detection algorithms are designed for single-relational networks. However, in the real world, social networks are mostly multi-relational. In this paper, we propose a coalition formation game theory-based approach to detect communities in multi-relational social networks. We define the multi-relational communities as the shared communities over multiple single-relational graphs, and model community detection as a coalition formation game process in which actors in a social network are modeled as rational players trying to improve group’s utilities by cooperating with other players to form coalitions. Each player is allowed to join multiple coalitions and coalitions with fewer players can merge into a larger coalition as long as the merge operation could improve the utilities of coalitions merged. We then use a greedy agglomerative manner to identify communities. Experimental results and performance studies verify the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Francesco, F., Clara, P.: An evolutionary multiobjective approach for community discovery in dynamic networks. IEEE Transactions on Knowledge and Data Engineering 26(8), 1838–1852 (2014)

    Article  Google Scholar 

  2. Zhou, L., Lü, K.: Detecting communities with different sizes for social network analysis. The Computer Journal (2014). doi:10.1093/comjnl/bxu087

  3. Xin, Y., Yang, J., Xie, Z.Q.: A semantic overlapping community detection algorithm based on field sampling. Expert Systems with Applications 42, 366–375 (2015)

    Article  Google Scholar 

  4. Yuan, W., Guan, D., Lee, Y.-K., Lee, S., Hur, S.J.: Improved trust-aware recommender system using small-worldness of trust networks. Knowledge-Based Systems 23(3), 232–238 (2010)

    Article  Google Scholar 

  5. Wu, P., Li, S.K.: Social network analysis layout algorithm under ontology model. Journal of Software 6(7), 1321–1328 (2011)

    Article  Google Scholar 

  6. Wang, D., Lin, Y.-R., Bagrow, J.P.: Social networks in emergency response. In: Alhajj, R., Rokne, J. (eds.) Encyclopedia of Social Network Analysis and Mining, vol. 1, pp. 1904–1914 (2014)

    Google Scholar 

  7. Li, G.P., Pan, Z.S., Xiao, B., Huang, L.W.: Community discovery and importance analysis in social network. Intelligent Data Analysis 18(3), 495–510 (2014)

    Google Scholar 

  8. Ströele, V., Zimbrão, G., Souza, J.M.: Group and link analysis of multi-relational scientific social networks. Journal of Systems and Software 86(7), 1819–1830 (2013)

    Article  Google Scholar 

  9. Cai, D., Shao, Z., He, X., Yan, X., Han, J.: Community mining from multi-relational networks. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 445–452. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Rodriguez, M., Shinavier, J.: Exposing multi-relational networks to single relational network analysis algorithms. Journal of Informetrics 4(1), 29–41 (2010)

    Article  Google Scholar 

  11. Szell, M., Lambiotte, R., Thurner, S.: Multirelational organization of large-scale social networks in an online world. Proceedings of the National Academy of Sciences of the United States of America 107(31), 13636–13641 (2010)

    Article  Google Scholar 

  12. Saad, W., Han, Z., Debbah, M., Hjørungnes, A., Basar, T.: Coalitional game theory for communication networks: a tutorial. IEEE Signal Processing Magazine 26(5), 77–97 (2009)

    Article  Google Scholar 

  13. Zacharias, G.L., MacMillan, J., Hemel, S.B.V. (eds.): Behavioral modeling and simulation: from individuals to societies. The National Academies Press, Washington, DC (2008)

    Google Scholar 

  14. Sarason, S.B.: The Psychological Sense of Community: Prospects for a Community Psychology. Jossey-Bass, San Francisco (1974)

    Google Scholar 

  15. Chen, W., Liu, Z., Sun, X., Wang, Y.: A Game-theoretic framework to identify overlapping communities in social networks. Data Mining and Knowledge Discovery 21(2), 224–240 (2010)

    Article  MathSciNet  Google Scholar 

  16. Fortunato, S.: Community detection in graphs. Physics Reports 486, 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  17. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69, 026113 (2004)

    Article  Google Scholar 

  18. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 10, P10008 (2008)

    Article  Google Scholar 

  19. Aynaud, T., Guillaume J.-L.: Multi-step community detection and hierarchical time segmentation in evolving networks. In: Proceedings of the fifth SNA-KDD Workshop on Social Network Mining and Analysis, in conjunction with the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2011), San Diego, CA, pp. 21–24, August 2011

    Google Scholar 

  20. Wu, Z., Yin, W., Cao, J., Xu, G., Cuzzocrea, A.: Community detection in multi-relational social networks. In: Lin, X., Manolopoulos, Y., Srivastava, D., Huang, G. (eds.) WISE 2013, Part II. LNCS, vol. 8181, pp. 43–56. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Tang, L., Wang, X., Liu, H.: Community detection via heterogeneous interaction analysis. Data Mining Knowledge Discovery 25(1), 1–33 (2012)

    Article  MathSciNet  Google Scholar 

  22. Lin, Y.-R., Choudhury, M.D., Sundaram, H., Kelliher, A.: Discovering Multi-Relational Structure in Social Media Streams. ACM Transactions on Multimedia Computing, Communications and Applications 8(1), 1–28 (2012)

    Article  Google Scholar 

  23. Zhang, Z., Li, Q., Zeng, D., Gao, H.: User community discovery from multi-relational networks. Decision Support Systems 54(2), 870–879 (2013)

    Article  Google Scholar 

  24. Li, X.T., Ng, M.K., Ye, Y.M.: MultiComm: finding community structure in multi-dimensional networks. IEEE Transactions on Knowledge and Data Engineering 26(4), 929–941 (2014)

    Article  Google Scholar 

  25. Nash, J.F.: Non-cooperative games. Annals of Mathematics 54(2), 286–295 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zlotkin, G., Rosenschein J.: Coalition cryptography and stability mechanisms for coalition formation in task oriented domains. In: Proceedings of The Twelfth National Conference on Artificial Intelligence, Seattle, Washington, August 1–4, pp. 432–437. The AAAI Press, Menlo Park (1994)

    Google Scholar 

  27. Alvari, H., Hashemi, S., Hamzeh, A.: Detecting overlapping communities in social networks by game theory and structural equivalence concept. In: Deng, H., Miao, D., Lei, J., Wang, F.L. (eds.) AICI 2011, Part II. LNCS, vol. 7003, pp. 620–630. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  28. Lung, R.I., Gog, A., Chira, C.: A game theoretic approach to community detection in social networks. In: Pelta, D.A., Krasnogor, N., Dumitrescu, D., Chira, C., Lung, R. (eds.) NICSO 2011. SCI, vol. 387, pp. 121–131. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  29. Hajibagheri, A., Alvari, H., Hamzeh, A., Hashemi, A.: Social networks community detection using the shapley value. In: 16th CSI International Symposium on Artificial Intelligence and Signal Processing (AISwww.lw20.comP), Shiraz, Iran, May 2–3, pp. 222–227 (2012)

  30. Zhou, L., Cheng, C., Lü, K., Chen, H.: Using coalitional games to detect communities in social networks. In: Wang, J., Xiong, H., Ishikawa, Y., Xu, J., Zhou, J. (eds.) WAIM 2013. LNCS, vol. 7923, pp. 326–331. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  31. Danon, L.: Danony, Díaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. Journal of Statistical Mechanics: Theory and Experiment 9, P09008 (2005)

    Google Scholar 

  32. Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Physical Review E 80(1), 16118 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihua Zhou or Hongmei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhou, L., Yang, P., Lü, K., Zhang, Z., Chen, H. (2015). A Coalition Formation Game Theory-Based Approach for Detecting Communities in Multi-relational Networks. In: Dong, X., Yu, X., Li, J., Sun, Y. (eds) Web-Age Information Management. WAIM 2015. Lecture Notes in Computer Science(), vol 9098. Springer, Cham. https://doi.org/10.1007/978-3-319-21042-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21042-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21041-4

  • Online ISBN: 978-3-319-21042-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics