Abstract
Relative termination, a generalized notion of termination, has been used in a number of different contexts like proving the confluence of rewrite systems or analyzing the termination of narrowing. In this paper, we introduce a new technique to prove relative termination by reducing it to dependency pair problems. To the best of our knowledge, this is the first significant contribution to Problem #106 of the RTA List of Open Problems. The practical significance of our method is illustrated by means of an experimental evaluation.
Germán Vidal is partially supported by the EU (FEDER) and the Spanish Ministerio de Economía y Competitividad under grant TIN2013-44742-C4-1-R and by the Generalitat Valenciana under grant PROMETEOII2015/013. Akihisa Yamada is supported by the Austrian Science Fund (FWF): Y757.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Available from URL http://www.termination-portal.org/.
- 2.
- 3.
Available at http://www.trs.cm.is.nagoya-u.ac.jp/NaTT/.
- 4.
Details are available at http://www.trs.cm.is.nagoya-u.ac.jp/papers/CADE2015.
- 5.
Available at http://z3.codeplex.com/.
- 6.
Available at http://termination-portal.org/wiki/TPDB.
- 7.
For one of the two problems, the union is terminating.
- 8.
For four examples, AProVE proved relative termination but NaTT failed. There AProVE used semantic labeling [30], which is currently not implemented in NaTT.
References
Alarcón, B., Lucas, S., Meseguer, J.: A dependency pair framework for A \(\vee \) C-termination. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 35–51. Springer, Heidelberg (2010)
Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000)
Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using dependency pairs. Technical report AIB-2001-09, RWTH Aachen (2001)
Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)
Dershowitz, N.: Termination of rewriting. J. Symb. Comput. 3(1&2), 69–115 (1987)
Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. J. Autom. Reasoning 40(2–3), 195–220 (2008)
Geser, A.: Relative termination. Dissertation, Fakultät für Mathematik und Informatik, Universität Passau, Germany (1990)
Giesl, J., Kapur, D.: Dependency pairs for equational rewriting. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 93–107. Springer, Heidelberg (2001)
Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: automatic termination proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)
Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reasoning 37(3), 155–203 (2006)
Hirokawa, N., Middeldorp, A.: Polynomial interpretations with negative coefficients. In: Buchberger, B., Campbell, J. (eds.) AISC 2004. LNCS (LNAI), vol. 3249, pp. 185–198. Springer, Heidelberg (2004)
Hirokawa, N., Middeldorp, A.: Dependency pairs revisited. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 249–268. Springer, Heidelberg (2004)
Hirokawa, N., Middeldorp, A.: Decreasing diagrams and relative termination. J. Autom. Reasoning 47(4), 481–501 (2011)
Hullot, J.M.: Canonical forms and unification. CADE-5. LNCS, vol. 87, pp. 318–334. Springer, Heidelberg (1980)
Iborra, J., Nishida, N., Vidal, G.: Goal-directed and relative dependency pairs for proving the termination of narrowing. In: De Schreye, D. (ed.) LOPSTR 2009. LNCS, vol. 6037, pp. 52–66. Springer, Heidelberg (2010)
Kamin, S., Lévy, J.J.: Two generalizations of the recursive path ordering (1980, unpublished note)
Klop, J.W.: Term rewriting systems: a tutorial. Bull. Eur. Assoc. Theor. Comput. Sci. 32, 143–183 (1987)
Koprowski, A., Zantema, H.: Proving liveness with fairness using rewriting. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 232–247. Springer, Heidelberg (2005)
Koprowski, A.: TPA: termination proved automatically. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 257–266. Springer, Heidelberg (2006)
Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg (2009)
Lankford, D.: Canonical algebraic simplification in computational logic. Technical report ATP-25, University of Texas (1975)
Liu, J., Dershowitz, N., Jouannaud, J.-P.: Confluence by critical pair analysis. In: Dowek, G. (ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 287–302. Springer, Heidelberg (2014)
Nishida, N., Sakai, M., Sakabe, T.: Narrowing-based simulation of term rewriting systems with extra variables. ENTCS 86(3), 52–69 (2003)
Nishida, N., Vidal, G.: Termination of narrowing via termination of rewriting. Appl. Algebra Eng. Commun. Comput. 21(3), 177–225 (2010)
Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer-Verlag, London (2002)
Thiemann, R., Allais, G., Nagele, J.: On the formalization of termination techniques based on multiset orderings. In: RTA 2012. LIPIcs, vol. 15, pp. 339–354. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)
Vidal, G.: Termination of narrowing in left-linear constructor systems. In: Garrigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 113–129. Springer, Heidelberg (2008)
Yamada, A., Kusakari, K., Sakabe, T.: Nagoya termination tool. In: Dowek, G. (ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 466–475. Springer, Heidelberg (2014)
Yamada, A., Kusakari, K., Sakabe, T.: A unified ordering for termination proving. Sci. Comput. Program. (2014). doi:10.1016/j.scico.2014.07.009
Zantema, H.: Termination of term rewriting by semantic labelling. Fundamenta Informaticae 24(1/2), 89–105 (1995)
Zantema, H.: Termination. In: Bezem, M., Klop, J.W., de Vrijer, R. (eds.) Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55, pp. 181–259. Cambridge University Press, Cambridge (2003)
Acknowledgement
We would like to thank Nao Hirokawa and the anonymous reviewers for their helpful comments and suggestions in early stages of this work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Iborra, J., Nishida, N., Vidal, G., Yamada, A. (2015). Reducing Relative Termination to Dependency Pair Problems. In: Felty, A., Middeldorp, A. (eds) Automated Deduction - CADE-25. CADE 2015. Lecture Notes in Computer Science(), vol 9195. Springer, Cham. https://doi.org/10.1007/978-3-319-21401-6_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-21401-6_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21400-9
Online ISBN: 978-3-319-21401-6
eBook Packages: Computer ScienceComputer Science (R0)