Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Optimal Algorithm for Plane Matchings in Multipartite Geometric Graphs

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9214))

Included in the following conference series:

Abstract

Let P be a set of n points in general position in the plane which is partitioned into color classes. P is said to be color-balanced if the number of points of each color is at most \(\lfloor n/2\rfloor \). Given a color-balanced point set P, a balanced cut is a line which partitions P into two color-balanced point sets, each of size at most \(2n/3 + 1\). A colored matching of P is a perfect matching in which every edge connects two points of distinct colors by a straight line segment. A plane colored matching is a colored matching which is non-crossing. In this paper, we present an algorithm which computes a balanced cut for P in linear time. Consequently, we present an algorithm which computes a plane colored matching of P optimally in \(\Theta (n\log n)\) time.

Research supported by NSERC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. The 1979 Putnam exam. In: Alexanderson, G.L., Klosinski, L.F., Larson, L.C. (eds.) The William Lowell Putnam Mathematical Competition Problems and Solutions: 1965–1984. Mathematical Association of America, USA (1985)

    Google Scholar 

  2. Agarwal, P.K., Efrat, A., Sharir, M.: Vertical decomposition of shallow levels in 3-dimensional arrangements and its applications. SIAM J. Comput. 29(3), 912–953 (1999)

    Article  MathSciNet  Google Scholar 

  3. Aichholzer, O., Cabello, S., Monroy, R.F., Flores-Peñaloza, D., Hackl, T., Huemer, C., Hurtado, F., Wood, D.R.: Edge-removal and non-crossing configurations in geometric graphs. Disc. Math. & Theo. Comp. Sci. 12(1), 75–86 (2010)

    MATH  Google Scholar 

  4. Bereg, S., Hurtado, F., Kano, M., Korman, M., Lara, D., Seara, C., Silveira, R.I., Urrutia, J., Verbeek, K.: Balanced partitions of 3-colored geometric sets in the plane. Discrete Applied Mathematics 181, 21–32 (2015)

    Article  MathSciNet  Google Scholar 

  5. Bereg, S., Kano, M.: Balanced line for a 3-colored point set in the plane. Electr. J. Comb. 19(1), P33 (2012)

    MathSciNet  Google Scholar 

  6. Cherkassky, B.V., Goldberg, A.V., Silverstein, C.: Buckets, heaps, lists, and monotone priority queues. SIAM J. Comput. 28(4), 1326–1346 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gabow, H.N.: Data structures for weighted matching and nearest common ancestors with linking. In: Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 434–443 (1990)

    Google Scholar 

  8. Hershberger, J., Suri, S.: Applications of a semi-dynamic convex hull algorithm. BIT 32(2), 249–267 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kano, M., Suzuki, K., Uno, M.: Properly colored geometric matchings and 3-trees without crossings on multicolored points in the plane. In: Akiyama, J., Ito, H., Sakai, T. (eds.) JCDCGG 2013. LNCS, vol. 8845, pp. 96–111. Springer, Heidelberg (2014)

    Google Scholar 

  10. Lo, C., Matousek, J., Steiger, W.L.: Algorithms for ham-sandwich cuts. Discrete & Computational Geometry 11, 433–452 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Overmars, M.H., van Leeuwen, J.: Maintenance of configurations in the plane. J. Comput. Syst. Sci. 23(2), 166–204 (1981)

    Article  MATH  Google Scholar 

  12. Sitton, D.: Maximum matchings in complete multipartite graphs. Furman University Electronic Journal of Undergraduate Mathematics 2, 6–16 (1996)

    Google Scholar 

  13. Vaidya, P.M.: Geometry helps in matching. SIAM J. Comput. 18(6) (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Biniaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Biniaz, A., Maheshwari, A., Nandy, S.C., Smid, M. (2015). An Optimal Algorithm for Plane Matchings in Multipartite Geometric Graphs. In: Dehne, F., Sack, JR., Stege, U. (eds) Algorithms and Data Structures. WADS 2015. Lecture Notes in Computer Science(), vol 9214. Springer, Cham. https://doi.org/10.1007/978-3-319-21840-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21840-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21839-7

  • Online ISBN: 978-3-319-21840-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics