Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Supernovae from Massive Stars

  • Reference work entry
  • First Online:
Handbook of Supernovae

Abstract

Massive stars, by which we mean those stars exploding as core collapse supernovae, play a pivotal role in the evolution of the Universe. Therefore, the understanding of their evolution and explosion is fundamental in many branches of physics and astrophysics, among which, galaxy evolution, nucleosynthesis, supernovae, neutron stars and pulsars, black holes, neutrinos, and gravitational waves. In this chapter, the author presents an overview of the presupernova evolution of stars in the range between 13 and 120 M, with initial metallicities between [Fe/H] = − 3 and [Fe/H] = 0 and initial rotation velocities v = 0,  150,  300 km∕s. Emphasis is placed upon those evolutionary properties that determine the final fate of the star with special attention to the interplay among mass loss, mixing, and rotation. A general picture of the evolution and outcome of a generation of massive stars, as a function of the initial mass, metallicity, and rotation velocity, is finally outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott BP et al, LIGO Scientific Collaboration, Virgo Collaboration (2016a) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116:061102

    Article  ADS  MathSciNet  Google Scholar 

  • Abbott BP et al., LIGO Scientific Collaboration, Virgo Collaboration (2016b) GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys Rev Lett 116:241103

    Article  ADS  Google Scholar 

  • Arnett D (1996) Supernovae and nucleosynthesis: an investigation of the history of matter, from the Big Bang to the present. Princeton series in astrophysics. Princeton University Press, Princeton

    Google Scholar 

  • Aufderheide MB, Baron E, Thielemann F-K (1991) Shock waves and nucleosynthesis in type II supernovae. Astrophys J 370:642–630

    Article  ADS  Google Scholar 

  • Bethe HA, Brown GE (1995) Observational constraints on the maximum neutron star mass. Astrophys J 445:L132–L129

    Article  ADS  Google Scholar 

  • Cappellaro E, Turatto M (2001) Supernova types and rates. The influence of binaries on stellar population studies. Astrophys Space Sci Libr 264:199

    Google Scholar 

  • Chieffi A, Limongi M (2013) Pre-supernova evolution of rotating solar metallicity stars in the mass range 13–120 M and their explosive yields. Astrophys J 764:21

    Article  ADS  Google Scholar 

  • Chieffi A, Limongi M, Straniero O (1998) The evolution of a 25 M star from the main sequence up to the onset of the iron core collapse. Astrophys J 502:762–737

    Article  Google Scholar 

  • Crowther PA (2007) Physical properties of Wolf-Rayet stars. Ann Rev Astron Astrophys 45:219–177

    Article  Google Scholar 

  • Dessart L, Hillier DJ, Livne E, Yoon S-C, Woosley S, Waldman R, Langer N (2011) Core-collapse explosions of Wolf-Rayet stars and the connection to Type IIb/Ib/Ic supernovae. Mon Not R Astron Soc 414:3005–2985

    Article  ADS  Google Scholar 

  • Foglizzo T, Kazeroni R, Guilet J, Masset F, Gonzalez M, Krueger BK, Novak J, Oertel M, Margueron J, Faure J, Martin N, Blottiau P, Peres B, Durand G (2015) The explosion mechanism of core-collapse supernovae: progress in supernova theory and experiments. Publ Astron Soc Aust 32:e009

    Article  ADS  Google Scholar 

  • Hachinger S, Mazzali PA, Taubenberger S, Hillebrandt W, Nomoto K, Sauer DN (2012) How much H and He is ’hidden’ in SNe Ib/c? – I. Low-mass objects. Mon Not R Astron Soc 422:88–70

    Article  ADS  Google Scholar 

  • Heger A, Woosley SE (2002) The nucleosynthetic signature of population III. Astrophys J 567:543–532

    Article  ADS  Google Scholar 

  • Heger A, Langer N, Woosley SE (2000) Presupernova evolution of rotating massive stars. I. Numerical method and evolution of the internal stellar structure. Astrophys J 528:396–368

    Article  Google Scholar 

  • Heger A, Fryer CL, Woosley SE, Langer N, Hartmann DH (2003) How massive single stars end their life. Astrophys J 591:300–288

    Article  ADS  Google Scholar 

  • Hirschi R (2007) Very low-metallicity massive stars: pre-SN evolution models and primary nitrogen production. Astron Astrophys 461:583–571

    Article  ADS  Google Scholar 

  • Imbriani G, Limongi M, Gialanella L, Terrasi F, Straniero O, Chieffi A (2001) The 12C(α, γ)16 O reaction rate and the evolution of stars in the mass range 0.8 ≤ M∕M ≤ 25. Astrophys J 558:915–903

    Article  ADS  Google Scholar 

  • Itoh N, Hayashi H, Nishikawa A, Kohyama Y (1996) Neutrino energy loss in stellar interiors. VII. Pair, photo-, plasma, bremsstrahlung, and recombination neutrino processes. Astrophys J Suppl Ser 102:411

    Google Scholar 

  • Kato S (1966) Overstable Convection in a medium stratified in mean molecular weight. Publ Astron Soc Jpn 18:374

    ADS  Google Scholar 

  • Kippenhahn R, Thomas H-C (1970) A simple method for the solution of the stellar structure equations including rotation and tidal forces. IAU Colloq. 4: Stellar Rotation, 20

    Google Scholar 

  • Kippenhahn R, Weigert A, Weiss A (2012) Stellar structure and evolution. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Langer N (1989) Mass-dependent mass loss rates of Wolf-Rayet stars. Astron Astrophys 220:143–135

    ADS  Google Scholar 

  • Langer N (2012) Presupernova evolution of massive single and binary stars. Ann Rev Astron Astrophys 50:164–107

    Article  Google Scholar 

  • Langer N, El Eid MF, Fricke KJ (1985) Evolution of massive stars with semiconvective diffusion. Astron Astrophys 145:191–179

    Google Scholar 

  • Limongi M, Chieffi A (2003) Evolution, explosion, and nucleosynthesis of core-collapse supernovae. Astrophys J 592:433–404

    Article  Google Scholar 

  • Limongi M, Chieffi A (2006) The nucleosynthesis of 26Al and 60Fe in solar metallicity stars extending in mass from 11 to 120 M: the hydrostatic and explosive contributions. Astrophys J 647:500–483

    Article  ADS  Google Scholar 

  • Limongi M, Chieffi A (2008a) Final stages of massive stars. SN explosion and explosive nucleosynthesis. EAS Publ Ser 32:281–233

    Article  Google Scholar 

  • Limongi M, Chieffi A (2008b) On the evolution and explosion of massive stars. Origin of Matter and Evolution of Galaxies 1016:98–91

    ADS  MATH  Google Scholar 

  • Limongi M, Straniero O, Chieffi A (2000) Massive Stars in the Range 13–25 M: evolution and nucleosynthesis. II. The Solar metallicity models. Astrophys J Suppl Ser 129: 664–625

    Article  Google Scholar 

  • Maeder A, Meynet G (2000) The evolution of rotating stars. Ann Rev Astron Astrophys 38:190–143

    Article  Google Scholar 

  • Maeder A, Meynet G (2012) Rotating massive stars: from first stars to gamma ray bursts. Rev Mod Phys 84:63–25

    Article  Google Scholar 

  • Massey P (2003) Massive Stars in the Local Group: implications for stellar evolution and star formation. Ann Rev Astron Astrophys 41:56–15

    Article  Google Scholar 

  • Meynet G, Maeder A (2000) Stellar evolution with rotation. V. Changes in all the outputs of massive star models. Astron Astrophys 361:120–101

    ADS  Google Scholar 

  • Morozova V, Piro AL, Renzo M, Ott CD, Clausen D, Couch SM, Ellis J, Roberts LF (2015) Light curves of core-collapse supernovae with substantial mass loss using the new open-source SuperNova Explosion Code (SNEC). Astrophys J 814:63

    Article  ADS  Google Scholar 

  • Nomoto K (2012) Final Fates of massive stars. Death of Massive Stars: Supernovae and Gamma-Ray Bursts 279:8–1

    ADS  Google Scholar 

  • Nugis T, Lamers HJGLM (2000) Mass-loss rates of Wolf-Rayet stars as a function of stellar parameters. Astron Astrophys 360:244–227

    ADS  Google Scholar 

  • Nomoto K, Hashimoto M (1988) Presupernova evolution of massive stars. Phys Rep 163:36–13

    Article  Google Scholar 

  • O’Connor E, Ott CD (2011) Black hole formation in failing core-collapse supernovae. Astrophys J 730:70–90

    Article  ADS  Google Scholar 

  • Pastorello A (2012) Supernova taxonomy – new types. Memorie della Societa Astronomica Italiana Supplementi 19:24

    ADS  Google Scholar 

  • Pons JA, Reddy S, Prakash M, Lattimer JM, Miralles JA (1999) Evolution of Proto-Neutron stars. Astrophys J 513:804–780

    Article  Google Scholar 

  • Schürmann D, Gialanella L, Kunz R, Strieder F (2012) The astrophysical S factor of 12C(α, γ)16O at stellar energy. Phys Lett B 711:40–35

    Article  ADS  Google Scholar 

  • Schwarzschild M, Härm R (1958) Evolution of very massive stars. Astrophys J 128:348

    Article  ADS  Google Scholar 

  • Spera M, Mapelli M, Bressan A (2015) The mass spectrum of compact remnants from the PARSEC stellar evolution tracks. Mon Not R Astron Soc 451:4103–4086

    Article  Google Scholar 

  • Stothers R (1970) Internal structure of upper main-sequence stars. Mon Not R Astron Soc 151:65

    Article  ADS  Google Scholar 

  • Thielemann F-K, Nomoto K, Hashimoto M-A (1996) Core-collapse supernovae and their ejecta. Astrophys J 460:408

    Article  ADS  Google Scholar 

  • Thielemann F-K, Rauscher T, Freiburghaus C, Nomoto K, Hashimoto M, Pfeiffer B, Kratz K-L (1998) Nucleosynthesis basics and applications to supernovae. Mexican School Nuclear Astrophys pp. 27–78

    Google Scholar 

  • Tornambe A, Chieffi A (1986) Extremely metal-deficient stars. II – evolution of intermediate-mass stars up to carbon ignition or core degeneracy. Mon Not R Astron Soc 220:547–529

    Article  ADS  Google Scholar 

  • van Loon JT, Cioni M-RL, Zijlstra AA, Loup C (2005) An empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich Asymptotic Giant Branch stars. Astron Astrophys 438:289–273

    Google Scholar 

  • Vink JS, de Koter A, Lamers HJGLM (2000) New theoretical mass-loss rates of O and B stars. Astron Astrophys 362:309–295

    Google Scholar 

  • Vink JS, de Koter A, Lamers HJGLM (2001) Mass-loss predictions for O and B stars as a function of metallicity. Astron Astrophys 369:588–574

    Article  Google Scholar 

  • Woosley SE (1986) Nucleosynthesis and stellar evolution. In: Hauck B, Maeder A, Meynet G (eds) Saas-fee advanced course 16. Nucleosynthesis and chemical evolution, Swiss society for astronomy and astrophysics (SSAA). Geneva Observatory, Sauverny, p. 1

    Google Scholar 

  • Woosley SE, Weaver TA (1995) The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys J Suppl Ser 101:181

    Google Scholar 

  • Woosley SE, Heger A, Weaver TA (2002) The evolution and explosion of massive stars. Rev Mod Phys 74:1071–1015

    Article  Google Scholar 

Download references

Acknowledgements

I am indebted to my friend and collaborator Alessandro Chieffi for enlightening discussions about several aspects of the presupernova evolution and final fate of massive stars and for many valuable suggestions. I also warmly thank my wife, Tatiana, for her continuous support and encouragement during the preparation and writing of this chapter. Finally, I am grateful to my colleague and friend Prof. Ken’ichi Nomoto for having invited me to write this chapter and for having improved the quality of the paper thanks to his revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Limongi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Limongi, M. (2017). Supernovae from Massive Stars. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-21846-5_119

Download citation

Publish with us

Policies and ethics