Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Note on Decidable Separability by Piecewise Testable Languages

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9210))

Included in the following conference series:

Abstract

The separability problem for word languages of a class \(\mathcal {C}\) by languages of a class \(\mathcal {S}\) asks, for two given languages I and E from \(\mathcal {C}\), whether there exists a language S from \(\mathcal {S}\) that includes I and excludes E, that is, \(I \subseteq S\) and \(S\cap E = \emptyset \). It is known that separability for context-free languages by any class containing all definite languages (such as regular languages) is undecidable. We show that separability of context-free languages by piecewise testable languages is decidable. This contrasts with the fact that testing if a context-free language is piecewise testable is undecidable. We generalize this decidability result by showing that, for every full trio (a class of languages that is closed under rather weak operations) which has decidable diagonal problem, separability with respect to piecewise testable languages is decidable. Examples of such classes are the languages defined by labeled vector addition systems and the languages accepted by higher order pushdown automata of order two. The proof goes through a result which is of independent interest and shows that, for any kind of languages I and E, separability can be decided by testing the existence of common patterns in I and E.

This work was supported by DFG grant MA 4938/2-1, by Poland’s National Science Centre grant no. UMO-2013/11/D/ST6/03075, and Agence Nationale de la Recherche ANR 2010 BLAN 0202 01 FREC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Emptiness of L over alphabet A can be decided by taking the \(\{x\}\)-upward closure of L, where \(x \notin A\), intersecting the resulting language with the regular language \((A\cup \{x\})^*A(A\cup \{x\})^*\), and then taking the \(\{x\}\)-projection. In the resulting language, the diagonal problem returns true iff L is nonempty [36].

  2. 2.

    Of course, one could also immediately obtain \(L_3\) from \(L_1\) by performing a single intersection with a regular language.

  3. 3.

    A simple proof of this fact can be found in [11].

References

  1. Aho, A.V.: Indexed grammars – an extension of context-free grammars. J. ACM 15(4), 647–671 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  2. Almeida, J.: Finite Semigroups and Universal Algebra, Volume 3 of Series in Algebra. World Scientific Publishing Company, Singapore (1994)

    Google Scholar 

  3. Antonopoulos, T., Hovland, D., Martens, W., Neven, F.: Deciding twig-definability of node selecting tree automata. In: ICDT, pp. 61–73 (2012)

    Google Scholar 

  4. Arfi, M.: Polynomial operations on rational languages. In: STACS, pp. 198–206 (1987)

    Google Scholar 

  5. Benedikt, M., Segoufin, L.: Regular tree languages definable in FO and in FO\(_{\rm mod}\). ACM Trans. Comput. Logi 11(1), 4:1–4:32 (2009)

    MathSciNet  Google Scholar 

  6. Berstel, J.: Transductions and context-free languages. Teubner, Stuttgart (1979)

    Book  MATH  Google Scholar 

  7. BojaƄczyk, M., Idziaszek, T.: Algebra for infinite forests with an application to the temporal logic EF. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 131–145. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Bojanczyk, M., Segoufin, L., Straubing, H.: Piecewise testable tree languages. LMCS 8(3), 1–20 (2012)

    MathSciNet  Google Scholar 

  9. Bonnet, R., Finkel, A., Leroux, J., Zeitoun, M.: Model checking vector addition systems with one zero-test. LMCS 8(2), 1–25 (2012)

    MathSciNet  Google Scholar 

  10. CzerwiƄski, W., Martens, W., Masopust, T.: Efficient separability of regular languages by subsequences and suffixes. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 150–161. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Esparza, J., Ganty, P., Kiefer, S., Luttenberger, M.: Parikh’s theorem: a simple and direct automaton construction. Inf. Process. Lett. 111(12), 614–619 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ginsburg, S., Greibach, S.A.: Abstract families of languages. In: SWAT / FOCS, pp. 128–139 (1967)

    Google Scholar 

  13. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas, and languages. Pacific J. Math. 16, 285–296 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  14. Greibach, S.: A note on undecidable properties of formal languages. Math. Sys. Theor. 2(1), 1–6 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hofman, P., Martens, W.: Separability by short subsequences and subwords. In: ICDT, pp. 230–246 (2015)

    Google Scholar 

  16. Hunt III, H.B.: On the decidability of grammar problems. J. ACM 29(2), 429–447 (1982)

    Article  MATH  Google Scholar 

  17. Jantzen, M.: On the hierarchy of Petri net languages. RAIRO Informatique ThĂ©orique 13(1), 19–30 (1979)

    MathSciNet  MATH  Google Scholar 

  18. Kosaraju, S.R.: Decidability of reachability in vector addition systems (preliminary version). In: STOC, pp. 267–281 (1982)

    Google Scholar 

  19. Leroux, J.: The general vector addition system reachability problem by Presburger inductive invariants. LMCS 6(3), 1–25 (2010)

    MathSciNet  Google Scholar 

  20. Maslov, A.N.: Multilevel stack automata. Probl. Inf. Transm. 12(1), 38–42 (1976)

    Google Scholar 

  21. Mayr, E.W.: An algorithm for the general Petri net reachability problem. SIAM J. Comput. 13(3), 441–460 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. McNaughton, R.: Algebraic decision procedures for local testability. Math. Syst. Theor. 8(1), 60–76 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  23. Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pin, J.-E., Weil, P.: Polynomial closure and unambiguous product. Theory Comput. Syst. 30(4), 383–422 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Place, T., van Rooijen, L., Zeitoun, M.: Separating regular languages by locally testable and locally threshold testable languages. In: FSTTCS, pp. 363–375 (2013)

    Google Scholar 

  26. Place, T., van Rooijen, L., Zeitoun, M.: Separating regular languages by piecewise testable and unambiguous languages. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 729–740. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  27. Place, T., Zeitoun, M.: Going higher in the first-order quantifier alternation hierarchy on words. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 342–353. Springer, Heidelberg (2014)

    Google Scholar 

  28. Place, T., Zeitoun, M.: Separating regular languages with first-order logic. In: CSL-LICS, pp. 75:1–75:10. ACM (2014)

    Google Scholar 

  29. SchĂŒtzenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control 8(2), 190–194 (1965)

    Article  MATH  Google Scholar 

  30. Simon, I.: Piecewise testable events. In: Simon, I. (ed.) Automata Theory and Formal Languages. LNCS, pp. 214–222. springer, Heidelberg (1975)

    Google Scholar 

  31. Simon, I.: Factorization forests of finite height. Theor. Comput. Sci. 72(1), 65–94 (1990)

    Article  MATH  Google Scholar 

  32. Straubing, H.: Semigroups and languages of dot-depth two. Theor. Comput. Sci. 58, 361–378 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. Szymanski, T., Williams, J.: Noncanonical extensions of bottom-up parsing techniques. SIAM J. Comput. 5(2), 231–250 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zalcstein, Y.: Locally testable languages. J. Comput. Syst. Sci. 6(2), 151–167 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zetzsche, G.: Personal communication

    Google Scholar 

  36. Zetzsche, G.: An approach to computing downward closures. In: ICALP (2015). To appear, Accessed on http://arxiv.org/abs/1503.01068

Download references

Acknowledgments

We would like to thank Tomåƥ Masopust for pointing us to [16] and Thomas Place for pointing out to us that determining if a given context-free language is piecewise testable is undecidable. We are also grateful to the anonymous reviewers for many helpful remarks that simplified proofs. We are much indebted to Georg Zetzsche for many useful remarks and most of all for sending us a simple proof that showed that, for full trios, separability by PTL implies decidability of the diagonal problem, thereby turning Theorem 2 into an equivalence. We plan to incorporate his proof in the full version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Martens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

CzerwiƄski, W., Martens, W., van Rooijen, L., Zeitoun, M. (2015). A Note on Decidable Separability by Piecewise Testable Languages. In: Kosowski, A., Walukiewicz, I. (eds) Fundamentals of Computation Theory. FCT 2015. Lecture Notes in Computer Science(), vol 9210. Springer, Cham. https://doi.org/10.1007/978-3-319-22177-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22177-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22176-2

  • Online ISBN: 978-3-319-22177-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics