Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Learning Trend Analysis and Prediction Based on Knowledge Tracing and Regression Analysis

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9052))

Included in the following conference series:

  • 1270 Accesses

Abstract

Estimating students’ knowledge is a fundamental and important task for student modeling in intelligent tutoring systems. Since the concept of knowledge tracing was proposed, there have been many studies focusing on estimating students’ mastery of specific knowledge components, yet few studies paid attention to the analysis and prediction on a student’s overall learning trend in the learning process. Therefore, we propose a method to analyze a student’s learning trend in the learning process and predict students’ performance in future learning. Firstly, we estimate the probability that the student has mastered the knowledge components with the model of Bayesian Knowledge Tracing, and then model students’ learning curves in the overall learning process and predict students’ future performance with Regression Analysis. Experimental results show that this method can be used to fit students’ learning trends well and can provide prediction with reference value for students’ performances in the future learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xie, H.R., Li, Q., Cai, Y.: Community-aware resource profiling for personalized search in folksonomy. J. Comput. Sci. Technol. 27(3), 599–610 (2012)

    Article  MATH  Google Scholar 

  2. Xie, H., Li, Q., Mao, X., Li, X., Cai, Y., Rao, Y.: Community-aware user profile enrichment in folksonomy. Neural Netw. 58, 111–121 (2014)

    Article  Google Scholar 

  3. Xie, H., Li, Q., Mao, X., Li, X., Cai, Y., Zheng, Q.: Mining latent user community for tag-based and content-based search in social media. Comput. J. 57(9), 1415–1430 (2014)

    Article  Google Scholar 

  4. Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of procedural knowledge. User Model. User-Adap. Interact. 4, 253–278 (1994)

    Article  Google Scholar 

  5. Beck, J.E., Chang, K.-M., Mostow, J., Corbett, A.T.: Does help help? introducing the bayesian evaluation and assessment methodology. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 383–394. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Pardos, Z.A., Heffernan, N.T.: Modeling individualization in a bayesian networks implementation of knowledge tracing. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 255–266. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Baker, R.S., Corbett, A.T., Aleven, V.: More accurate student modeling through contextual estimation of slip and guess probabilities in bayesian knowledge tracing. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 406–415. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Baker, R.S., Corbett, A.T., Aleven, V.: Improving contextual models of guessing and slipping with a truncated training set. Human-Computer Interaction Institute 17 (2008)

    Google Scholar 

  9. Baker, R.S., Corbett, A.T., Gowda, S.M., Wagner, A.Z., MacLaren, B.A., Kauffman, L.R., Mitchell, A.P., Giguere, S.: Contextual slip and prediction of student performance after use of an intelligent tutor. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 52–63. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Baker, R.S., Goldstein, A.B., Heffernan, N.T.: Detecting learning moment-by-moment. Int. J. Artif. Intell. Educ. 21, 5–25 (2011)

    Google Scholar 

  11. Pardos, Z.A., Heffernan, N.T.: KT-IDEM: Introducing item difficulty to the knowledge tracing model. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 243–254. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Gowda, S.M., Rowe, J.P., de Baker, R.S.J., Chi, M., Koedinger, K.R.: Improving models of slipping, guessing, and moment-by-moment learning with estimates of skill difficulty. EDM 2011, 199–208 (2011)

    Google Scholar 

  13. Pavlik Jr., P.I., Cen, H., Koedinger, K.R.: Learning Factors Transfer Analysis: Using Learning Curve Analysis to Automatically Generate Domain Models (2009)

    Google Scholar 

  14. Pavlik Jr., P.I., Cen, H., Koedinger, K.R.: Performance Factors Analysis–A New Alternative to Knowledge Tracing (2009)

    Google Scholar 

  15. Senturk, D.: Explanatory item response models: A generalized linear and nonlinear approach. Technometrics 48, 568–569 (2006)

    Article  Google Scholar 

  16. Pardos, Z.A., Gowda, S.M., de Baker, R.S.J., Heffernan, N.T.: Ensembling predictions of student post-test scores for an intelligent tutoring system. In: EDM, pp. 189–198 (2011)

    Google Scholar 

  17. Pardos, Z.A., Heffernan, N.T., Anderson, B., Heffernan, C.L., Schools, W.P.: Using fine-grained skill models to fit student performance with Bayesian networks. Handbook of educational data mining 417 (2010)

    Google Scholar 

  18. Heffernan, N., Koedinger, K., Junker, B., Ritter, S.: Using Web-based cognitive assessment systems for predicting student performance on state exams. Research proposal to the Institute of Educational Statistics, US Department of Education. Department of Computer Science at Worcester Polytechnic Institute, Massachusetts (2001)

    Google Scholar 

  19. Anozie, N., Junker, B.W.: Predicting end-of-year accountability assessment scores from monthly student records in an online tutoring system. Educational Data Mining: Papers from the AAAI Workshop. Menlo Park, CA: AAAI Press (2006)

    Google Scholar 

  20. Chang, K.-M., Beck, J.E., Mostow, J., Corbett, A.T.: A bayes net toolkit for student modeling in intelligent tutoring systems. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 104–113. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Koedinger, K.R., Baker, R., Cunningham, K., Skogsholm, A., Leber, B., Stamper, J.: A data repository for the EDM community: The PSLC DataShop. Handbook of educational data mining 43 (2010)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (Project Nos. 61370137), the International Corporation Project of Beijing Institute of Technology (No. 3070012221404) and the 111 Project of Beijing Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhendong Niu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cai, Y., Niu, Z., Wang, Y., Niu, K. (2015). Learning Trend Analysis and Prediction Based on Knowledge Tracing and Regression Analysis. In: Liu, A., Ishikawa, Y., Qian, T., Nutanong, S., Cheema, M. (eds) Database Systems for Advanced Applications. DASFAA 2015. Lecture Notes in Computer Science(), vol 9052. Springer, Cham. https://doi.org/10.1007/978-3-319-22324-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22324-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22323-0

  • Online ISBN: 978-3-319-22324-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics