Abstract
We consider the problem of inferring the local transition functions of discrete dynamical systems from observed behavior. Our focus is on synchronous systems whose local transition functions are threshold functions. We assume that the topology of the system is known and that the goal is to infer a threshold value for each node so that the system produces the observed behavior. We show that some of these inference problems are efficiently solvable while others are NP-complete, even when the underlying graph of the dynamical system is a simple path. We also identify a fixed parameter tractable problem in this context.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We will use the term “stable configuration” instead of “fixed point” throughout this paper since we will be using the word “fixed” in the context of fixed parameter tractability.
References
Abrahao, B., Chierichetti, F., Kleinberg, R., Panconesi, A.: Trace complexity of network inference. In: Proceedings of the 19th ACM SIGKDD, pp. 491–499. ACM (2013)
Adiga, A., Kuhlman, C.J., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Complexity of inferring local transition functions of discrete dynamical systems. Technical report NDSSL-TR-15-048, NDSSL, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, June 2015
Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Complexity of reachability problems for finite discrete dynamical systems. J. Comput. Syst. Sci. 72(8), 1317–1345 (2006)
Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Modeling and analyzing social network dynamics using stochastic discrete graphical dynamical systems. Theo. Comput. Sci. 412(30), 3932–3946 (2011)
Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E., Thakur, M.: Predecessor existence problems for finite discrete dynamical systems. Theo. Comput. Sci. 386(1–2), 3–37 (2007)
Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E., Tosic, P.T.: Gardens of Eden and fixed points in sequential dynamical systems. In: DM-CCG, pp. 95–110 (2001)
Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. MIT Press and McGraw-Hill, Cambridge (2009)
Durand, B.: A random NP-complete problem for inversion of 2D cellular automata. Theor. Comput. Sci. 148(1), 19–32 (1995)
Easley, D., Kleinberg, J.: Networks, crowds and markets: reasoning about a highly connected world. Cambridge University Press, New York (2010)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. W. H. Freeman and Co., San Francisco (1979)
Goles, E., Martínez, S.: Neural and automata networks. Kluwer, Dordrecht (1990)
Gomez Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence. In: Proceedings of the 16th ACM SIGKDD, pp. 1019–1028. ACM (2010)
Gonzalez-Bailon, S., Borge-Holthoefer, J., Rivero, A., Moreno, Y.: The Dynamics of Protest Recruitment Through an Online Network. In: Nature Scientific Reports, pp. 1–7 (2011), doi:10.1038/srep00197
Graham, R., Knuth, D., Patashnik, O.: Concrete Mathematics. Addison-Wesley, Reading (1994)
Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)
Green, F.: NP-complete problems in cellular automata. Complex Syst. 1(3), 453–474 (1987)
Håstad, J.: Clique is hard to approximate within \(n^{1-\epsilon }\). Acta Mathematica 182, 105–142 (1999)
Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory. MIT Press, Cambridge (1994)
Kleinberg, J.: Cascading behavior in networks: Algorithmic and economic issues. In: Nissan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Graph Theory. ch. 24. Cambridge University Press, New York (2008)
Kosub, S., Homan, C.M.: Dichotomy results for fixed point counting in Boolean dynamical systems. In: Proceedings of the ICTCS, pp. 163–174 (2007)
Macy, M., Willer, R.: From factors to actors: Computational sociology and agent-based modeling. Ann. Rev. Sociol. 28, 143–166 (2002)
Mortveit, H.S., Reidys, C.M.: An Introduction to Sequential Dynamical Systems. Springer, Heidelberg (2007)
Murphy, K.P.: Passively learning finite automata. Technical report, Computer Science Department, UC Davis (1995)
Neidermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford University Press, New York (2006)
Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In: Proceedings of the 20th WWW, pp. 695–704. ACM (2011)
Shah, D., Zaman, T.: Rumors in a network: Who’s the culprit? IEEE Trans. Inf. Theory 57(8), 5163–5181 (2011)
Soundarajan, S., Hopcroft, J.E.: Recovering social networks from contagion information. In: Kratochvíl, J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108, pp. 419–430. Springer, Heidelberg (2010)
Sutner, K.: Computational classification of cellular automata. Int. J. Gen. Syst. 41(6), 595–607 (2012)
Trucano, T.G., Swiler, L.P., Igusa, T., Oberkampf, W.L., Pilch, M.: Calibration, validation and sensitivity analysis: What is what. Reliab. Eng. Syst. Saf. 91, 1331–1357 (2006)
Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J.: Structural diversity in social contagion. PNAS 109(9), 5962–5966 (2012)
Acknowledgments
We thank the reviewers for carefully reading the manuscript and providing valuable suggestions. This work has been partially supported by DTRA Grant HDTRA1-11-1-0016 and DTRA CNIMS Contract HDTRA1-11-D-0016-0010, NSF NetSE Grant CNS-1011769, NSF SDCI Grant OCI-1032677 and NIH MIDAS Grant 5U01GM070694-11.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Adiga, A., Kuhlman, C.J., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E. (2015). Complexity of Inferring Local Transition Functions of Discrete Dynamical Systems. In: Drewes, F. (eds) Implementation and Application of Automata. CIAA 2015. Lecture Notes in Computer Science(), vol 9223. Springer, Cham. https://doi.org/10.1007/978-3-319-22360-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-22360-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-22359-9
Online ISBN: 978-3-319-22360-5
eBook Packages: Computer ScienceComputer Science (R0)