Abstract
Synchronous Kleene algebra (SKA) is a decidable framework that combines Kleene algebra (KA) with a synchrony model of concurrency. Elements of SKA can be seen as processes taking place within a fixed discrete time frame and that, at each time step, may execute one or more basic actions or then come to a halt. The synchronous Kleene algebra with tests (SKAT) combines SKA with a Boolean algebra. Both algebras were introduced by Prisacariu, who proved the decidability of the equational theory, through a Kleene theorem based on the classical Thompson \(\varepsilon \)-NFA construction. Using the notion of partial derivatives, we present a new decision procedure for equivalence between SKA terms. The results are extended for SKAT considering automata with transitions labeled by Boolean expressions instead of atoms. This work continous previous research done for KA and KAT, where derivative based methods were used in feasible algorithms for testing terms equivalence.
This work was partially supported by CMUP (UID/MAT/00144/2013), which is funded by FCT (Portugal) with national (MEC) and European structural funds through the programs FEDER, under the partnership agreement PT2020, and through the programme COMPETE and by the Portuguese Government through the FCT under project FCOMP-01-0124-FEDER-020486.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Source code at http://www.dcc.fc.up.pt/~nam/web/resources/katexp.tgz.
References
Almeida, M., Moreira, N., Reis, R.: Testing regular languages equivalence. J. Automata Lang. Comb. 15(1/2), 7–25 (2010)
Almeida, R.: Decision algorithms for Kleene algebra with tests and Hoare logic. Master’s thesis, Faculdade de Ciências da Universidade do Porto, July 2012. http://www.dcc.fc.up.pt/~nam/web/resources/docs/thesisRA.pdf
Almeida, R., Broda, S., Moreira, N.: Deciding KAT and Hoare logic with derivatives. In: Faella, M., Murano, A. (eds.) 3rd GANDALF. EPTCS, vol. 96, pp. 127–140 (2012)
Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton constructions. Theoret. Comput. Sci. 155(2), 291–319 (1996)
Berry, G., Gonthier, G.: The Esterel synchronous programming language: design, semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992)
Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congruence. In: Giacobazzi, R., Cousot, R. (eds.) POPL 2013, pp. 457–468. ACM (2013)
Braibant, T., Pous, D.: Deciding Kleene algebras in Coq. Log. Methods Comput. Sci. 8(1), 1–42 (2012)
Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average size of Glushkov and partial derivative automata. Int. J. Found. Comput. Sci. 23(5), 969–984 (2012)
Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average size of Glushkov and equation automata for \({\sf {KAT}}\) expressions. In: Gąsieniec, L., Wolter, F. (eds.) FCT 2013. LNCS, vol. 8070, pp. 72–83. Springer, Heidelberg (2013)
Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the equivalence of automata for \({\sf {KAT}}\)-expressions. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds.) CiE 2014. LNCS, vol. 8493, pp. 73–83. Springer, Heidelberg (2014)
Broda, S., Machiavelo, A., Moreira, N., Reis, R.: Partial derivative automaton for regular expressions with shuffle. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 21–32. Springer, Heidelberg (2015)
Coquand, T., Siles, V.: A decision procedure for regular expression equivalence in type theory. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 119–134. Springer, Heidelberg (2011)
Glushkov, V.M.: The abstract theory of automata. Russ. Math. Surv. 16, 1–53 (1961)
Hopcroft, J., Karp, R.M.: A linear algorithm for testing equivalence of finite automata. Technical report TR 71–114, University of California, Berkeley, California (1971)
Kozen, D.: Kleene algebra with tests. Trans. Prog. Lang. Syst. 19(3), 427–443 (1997)
Kozen, D.: On Hoare logic and Kleene algebra with tests. ACM Trans. Comput. Log. 1(1), 60–76 (2000)
Kozen, D.: Automata on guarded strings and applications. Matématica Contemporânea 24, 117–139 (2003)
Kozen, D.: On the coalgebraic theory of Kleene algebra with tests. Technical report, Cornell University (2008). http://hdl.handle.net/1813/10173
Krauss, A., Nipkow, T.: Proof pearl: regular expression equivalence and relation algebra. J. Autom. Reasoning 49, 95–109 (2011)
Milner, R.: Communication and concurrency. PHI Series in computer science. Prentice Hall, Upper Saddle River (1989)
Moreira, N., Pereira, D., Melo de Sousa, S.: Deciding regular expressions (in-)equivalence in Coq. In: Kahl, W., Griffin, T.G. (eds.) RAMICS 2012. LNCS, vol. 7560, pp. 98–113. Springer, Heidelberg (2012)
Nipkow, T., Traytel, D.: Unified decision procedures for regular expression equivalence. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 450–466. Springer, Heidelberg (2014). Archive of Formal Proofs 2014
Pereira, D.: Towards certified program logics for the verification of imperative programs. Ph.D. thesis, University of Porto (2013)
Pous, D.: Symbolic algorithms for language equivalence and Kleene algebra with tests. In: Rajamani, S.K., Walker, D. (eds.) 42nd POPL 2015, pp. 357–368. ACM (2015)
Prisacariu, C.: Synchronous Kleene algebra. J. Log. Algebr. Program. 79(7), 608–635 (2010)
Project FAdo: FAdo: tools for formal languages manipulation. http://fado.dcc.fc.up.pt/.(Accessed on 01 April 2015)
Rot, J., Bonsangue, M., Rutten, J.: Coinductive proof techniques for language equivalence. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 480–492. Springer, Heidelberg (2013)
Silva, A.: Position automata for Kleene algebra with tests. Sci. Ann. Comp. Sci. 22(2), 367–394 (2012)
Synopsys: Esterel studio. http://www.synopsys.com/home.aspx
Thompson, K.: Regular expression search algorithm. Commun. ACM 11(6), 410–422 (1968)
Veanes, M.: Applications of symbolic finite automata. In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982, pp. 16–23. Springer, Heidelberg (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Broda, S., Cavadas, S., Ferreira, M., Moreira, N. (2015). Deciding Synchronous Kleene Algebra with Derivatives. In: Drewes, F. (eds) Implementation and Application of Automata. CIAA 2015. Lecture Notes in Computer Science(), vol 9223. Springer, Cham. https://doi.org/10.1007/978-3-319-22360-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-22360-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-22359-9
Online ISBN: 978-3-319-22360-5
eBook Packages: Computer ScienceComputer Science (R0)