Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Complex Symbolic Sequence Encodings for Predictive Monitoring of Business Processes

  • Conference paper
  • First Online:
Business Process Management (BPM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9253))

Included in the following conference series:

Abstract

This paper addresses the problem of predicting the outcome of an ongoing case of a business process based on event logs. In this setting, the outcome of a case may refer for example to the achievement of a performance objective or the fulfillment of a compliance rule upon completion of the case. Given a log consisting of traces of completed cases, given a trace of an ongoing case, and given two or more possible outcomes (e.g., a positive and a negative outcome), the paper addresses the problem of determining the most likely outcome for the case in question. Previous approaches to this problem are largely based on simple symbolic sequence classification, meaning that they extract features from traces seen as sequences of event labels, and use these features to construct a classifier for runtime prediction. In doing so, these approaches ignore the data payload associated to each event. This paper approaches the problem from a different angle by treating traces as complex symbolic sequences, that is, sequences of events each carrying a data payload. In this context, the paper outlines different feature encodings of complex symbolic sequences and compares their predictive accuracy on real-life business process event logs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. 3TU Data Center: BPI Challenge 2011 Event Log (2011). doi:10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

  2. van der Aalst, W.M.P., Pesic, M., Song, M.: Beyond process mining: from the past to present and future. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 38–52. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)

    Article  Google Scholar 

  4. Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognition 30(7), 1145–1159 (1997)

    Article  Google Scholar 

  5. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  Google Scholar 

  6. Castellanos, M., Salazar, N., Casati, F., Dayal, U., Shan, M.-C.: Predictive business operations management. In: Bhalla, S. (ed.) DNIS 2005. LNCS, vol. 3433, pp. 1–14. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Conforti, R., de Leoni, M., Rosa, M.L., van der Aalst, W.M.P., ter Hofstede, A.H.M.: A recommendation system for predicting risks across multiple business process instances. Decision Support Systems 69, 1–19 (2015)

    Article  Google Scholar 

  8. Feldman, Z., Fournier, F., Franklin, R., Metzger, A.: Proactive event processing in action: a case study on the proactive management of transport processes. In: Proc. of DEBS, pp. 97–106. ACM (2013)

    Google Scholar 

  9. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of classifiers to solve real world classification problems? The Journal of Machine Learning Research 15(1), 3133–3181 (2014)

    MATH  Google Scholar 

  10. Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting business process performances. In: Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., et al. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Goldszmidt, M.: Finding soon-to-fail disks in a haystack. In: Proc. of HotStorage. USENIX (2012)

    Google Scholar 

  12. Kang, B., Kim, D., Kang, S.H.: Real-time business process monitoring method for prediction of abnormal termination using knni-based lof prediction. Expert Syst, Appl. (2012)

    Google Scholar 

  13. Leontjeva, A., Goldszmidt, M., Xie, Y., Yu, F., Abadi, M.: Early security classification of skype users via machine learning. In: Proc. of AISec, pp. 35–44. ACM (2013)

    Google Scholar 

  14. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Heidelberg (2014)

    Google Scholar 

  15. Metzger, A., Franklin, R., Engel, Y.: Predictive monitoring of heterogeneous service-oriented business networks: the transport and logistics case. In: Proc. of SRII Global Conference. IEEE (2012)

    Google Scholar 

  16. Pika, A., van der Aalst, W.M.P., Fidge, C.J., ter Hofstede, A.H.M., Wynn, M.T.: Predicting deadline transgressions using event logs. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 211–216. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Pnueli, A.: The temporal logic of programs. In: Proc. of FOCS, pp. 46–57. IEEE (1977)

    Google Scholar 

  18. Rabiner, L.: A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  19. Ridgeway, G.: Generalized boosted models: A guide to the gbm package. Update 1(1) (2007)

    Google Scholar 

  20. Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Suriadi, S., Ouyang, C., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Root cause analysis with enriched process logs. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 174–186. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  22. Suriadi, S., Wynn, M.T., Ouyang, C., ter Hofstede, A.H.M., van Dijk, N.J.: Understanding process behaviours in a large insurance company in australia: a case study. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 449–464. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural Processing Letters 9(3), 293–300 (1999)

    Article  MathSciNet  Google Scholar 

  24. Xing, Z., Pei, J., Keogh, E.J.: A brief survey on sequence classification. SIGKDD Explorations 12(1), 40–48 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Leontjeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M. (2015). Complex Symbolic Sequence Encodings for Predictive Monitoring of Business Processes. In: Motahari-Nezhad, H., Recker, J., Weidlich, M. (eds) Business Process Management. BPM 2016. Lecture Notes in Computer Science(), vol 9253. Springer, Cham. https://doi.org/10.1007/978-3-319-23063-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23063-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23062-7

  • Online ISBN: 978-3-319-23063-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics