Abstract
This paper addresses the problem of predicting the outcome of an ongoing case of a business process based on event logs. In this setting, the outcome of a case may refer for example to the achievement of a performance objective or the fulfillment of a compliance rule upon completion of the case. Given a log consisting of traces of completed cases, given a trace of an ongoing case, and given two or more possible outcomes (e.g., a positive and a negative outcome), the paper addresses the problem of determining the most likely outcome for the case in question. Previous approaches to this problem are largely based on simple symbolic sequence classification, meaning that they extract features from traces seen as sequences of event labels, and use these features to construct a classifier for runtime prediction. In doing so, these approaches ignore the data payload associated to each event. This paper approaches the problem from a different angle by treating traces as complex symbolic sequences, that is, sequences of events each carrying a data payload. In this context, the paper outlines different feature encodings of complex symbolic sequences and compares their predictive accuracy on real-life business process event logs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
3TU Data Center: BPI Challenge 2011 Event Log (2011). doi:10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
van der Aalst, W.M.P., Pesic, M., Song, M.: Beyond process mining: from the past to present and future. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 38–52. Springer, Heidelberg (2010)
van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)
Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognition 30(7), 1145–1159 (1997)
Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
Castellanos, M., Salazar, N., Casati, F., Dayal, U., Shan, M.-C.: Predictive business operations management. In: Bhalla, S. (ed.) DNIS 2005. LNCS, vol. 3433, pp. 1–14. Springer, Heidelberg (2005)
Conforti, R., de Leoni, M., Rosa, M.L., van der Aalst, W.M.P., ter Hofstede, A.H.M.: A recommendation system for predicting risks across multiple business process instances. Decision Support Systems 69, 1–19 (2015)
Feldman, Z., Fournier, F., Franklin, R., Metzger, A.: Proactive event processing in action: a case study on the proactive management of transport processes. In: Proc. of DEBS, pp. 97–106. ACM (2013)
Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of classifiers to solve real world classification problems? The Journal of Machine Learning Research 15(1), 3133–3181 (2014)
Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting business process performances. In: Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., et al. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012)
Goldszmidt, M.: Finding soon-to-fail disks in a haystack. In: Proc. of HotStorage. USENIX (2012)
Kang, B., Kim, D., Kang, S.H.: Real-time business process monitoring method for prediction of abnormal termination using knni-based lof prediction. Expert Syst, Appl. (2012)
Leontjeva, A., Goldszmidt, M., Xie, Y., Yu, F., Abadi, M.: Early security classification of skype users via machine learning. In: Proc. of AISec, pp. 35–44. ACM (2013)
Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Heidelberg (2014)
Metzger, A., Franklin, R., Engel, Y.: Predictive monitoring of heterogeneous service-oriented business networks: the transport and logistics case. In: Proc. of SRII Global Conference. IEEE (2012)
Pika, A., van der Aalst, W.M.P., Fidge, C.J., ter Hofstede, A.H.M., Wynn, M.T.: Predicting deadline transgressions using event logs. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 211–216. Springer, Heidelberg (2013)
Pnueli, A.: The temporal logic of programs. In: Proc. of FOCS, pp. 46–57. IEEE (1977)
Rabiner, L.: A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)
Ridgeway, G.: Generalized boosted models: A guide to the gbm package. Update 1(1) (2007)
Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg (2013)
Suriadi, S., Ouyang, C., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Root cause analysis with enriched process logs. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 174–186. Springer, Heidelberg (2013)
Suriadi, S., Wynn, M.T., Ouyang, C., ter Hofstede, A.H.M., van Dijk, N.J.: Understanding process behaviours in a large insurance company in australia: a case study. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 449–464. Springer, Heidelberg (2013)
Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural Processing Letters 9(3), 293–300 (1999)
Xing, Z., Pei, J., Keogh, E.J.: A brief survey on sequence classification. SIGKDD Explorations 12(1), 40–48 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M. (2015). Complex Symbolic Sequence Encodings for Predictive Monitoring of Business Processes. In: Motahari-Nezhad, H., Recker, J., Weidlich, M. (eds) Business Process Management. BPM 2016. Lecture Notes in Computer Science(), vol 9253. Springer, Cham. https://doi.org/10.1007/978-3-319-23063-4_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-23063-4_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23062-7
Online ISBN: 978-3-319-23063-4
eBook Packages: Computer ScienceComputer Science (R0)