Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Binarization of MultiSpectral Document Images

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9257))

Included in the following conference series:

Abstract

This work is concerned with the binarization of document images caputured by MultiSpectral Imaging (MSI) systems. The documents imaged are historical manuscripts and MSI is used to gather more information compared to traditional RGB photographs or scans. The binarization method proposed makes use of a state-of-the-art binarization algorithm, which is applied on a single image taken from the stack of multispectral images. This output is then combined with the output of a target detection algorithm. The target detection method is named Adaptive Coherence Estimator (ACE) and it is used to improve the binarization performance. Numerical results show that the combination of both algorithms leads to a performance increase. Additionally, the results exhibit that the method performs partially better than other binarization methods designed for grayscale and multispectral images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cisz, A.P., Schott, J.R.: Performance comparison of hyperspectral target detection algorithms in altitude varying scenes. In: SPIE Conference on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, vol. 5806 (2005)

    Google Scholar 

  2. Cohen, Y., August, Y., Blumberg, D.G., Rotman, S.R.: Evaluating subpixel target detection algorithms in hyperspectral imagery. J. Electrical and Computer Engineering 2012 (2012)

    Google Scholar 

  3. Gatos, B., Pratikakis, I., Perantonis, S.J.: Adaptive degraded document image binarization. Pattern Recognition 39(3), 317–327 (2006)

    Article  MATH  Google Scholar 

  4. Harsanyi, J.C.: Detection and classification of subpixel spectral signatures in hyperspectral image sequences. Ph.D. thesis, Dept. Elect. Eng. University of Maryland, Baltimore County (1993)

    Google Scholar 

  5. Hedjam, R., Cheriet, M.: Historical document image restoration using multispectral imaging system. Pattern Recognition 46(8), 2297–2312 (2013)

    Article  Google Scholar 

  6. Hedjam, R., Cheriet, M., Kalacska, M.: Constrained energy maximization and self-referencing method for invisible ink detection from multispectral historical document images. In: ICPR, pp. 3026–3031 (2014)

    Google Scholar 

  7. Hollaus, F., Gau, M., Sablatnig, R.: Enhancement of multispectral images of degraded documents by employing spatial information. In: ICDAR, pp. 145–149 (2013)

    Google Scholar 

  8. Howe, N.R.: A laplacian energy for document binarization. In: ICDAR, pp. 6–10 (2011)

    Google Scholar 

  9. Lettner, M., Sablatnig, R.: Higher order mrf for foreground-background separation in multi-spectral images of historical manuscripts. In: Document Analysis Systems, pp. 317–324 (2010)

    Google Scholar 

  10. Mitianoudis, N., Papamarkos, N.: Multi-spectral document image binarization using image fusion and background subtraction techniques. In: ICIP, pp. 5172–5176 (2014)

    Google Scholar 

  11. Moghaddam, R.F., Cheriet, M.: A multi-scale framework for adaptive binarization of degraded document images. Pattern Recognition 43(6), 2186–2198 (2010)

    Article  MATH  Google Scholar 

  12. Moghaddam, R.F., Cheriet, M.: Adotsu: An adaptive and parameterless generalization of otsu’s method for document image binarization. Pattern Recognition 45(6), 2419–2431 (2012)

    Article  Google Scholar 

  13. Moghaddam, R.F., Cheriet, M.: A multiple-expert binarization framework for multispectral images. CoRR abs/1502.01199 (2015)

    Google Scholar 

  14. Otsu, N.: A Threshold Selection Method from Gray-level Histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  15. Rivest-Hénault, D., Moghaddam, R.F., Cheriet, M.: A local linear level set method for the binarization of degraded historical document images. IJDAR 15(2), 101–124 (2012)

    Article  Google Scholar 

  16. Salerno, E., Tonazzini, A., Bedini, L.: Digital image analysis to enhance underwritten text in the archimedes palimpsest. IJDAR 9(2–4), 79–87 (2007)

    Article  Google Scholar 

  17. Scharf, L., McWhorter, L.: Adaptive matched subspace detectors and adaptive coherence estimators. In: Conference Record of the Thirtieth Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 1114–1117 (1996)

    Google Scholar 

  18. Su, B., Lu, S., Tan, C.L.: Binarization of historical document images using the local maximum and minimum. In: DAS, pp. 159–166 (2010)

    Google Scholar 

  19. Theiler, J., Foy, B.R., Fraser, A.M.: Beyond the adaptive matched filter: nonlinear detectors for weak signals in high-dimensional clutter. In: SPIE Conference on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII, vol. 6565, pp. 656503–656503-12 (2007)

    Google Scholar 

  20. West, J.E., Messinger, D.W., Ientilucci, E.J., Kerekes, J.P., Schott, J.R.: Matched filter stochastic background characterization for hyperspectral target detection. In: SPIE Conference on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, vol. 5806, pp. 1–12 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Hollaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hollaus, F., Diem, M., Sablatnig, R. (2015). Binarization of MultiSpectral Document Images. In: Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science(), vol 9257. Springer, Cham. https://doi.org/10.1007/978-3-319-23117-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23117-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23116-7

  • Online ISBN: 978-3-319-23117-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics