Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Projective Label Propagation by Label Embedding

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9257))

Included in the following conference series:

Abstract

In this paper, we propose a projective label propagation (ProjLP) framework by label embedding that can gain the more discriminating “deep” labels of points in an transductive fashion to enhance representation. To show the deep property of the embedded “deep” labels over the “shallow” ones that usually have unfavorable mixed signs delivered by existing transductive models, the auxiliary multilayer network architecture of our ProjLP is illustrated. The deep architecture has three layers (i.e., input layer, hidden layer, and output layer). For semi-supervised classification, ProjLP delivers the deep labels of data via two-layer label propagation (i.e., hidden and output layer) on the network at each iteration. In hidden layer, ProjLP delivers the “shallow” soft labels F of points in the original input space. Then, ProjLP embeds F onto a subspace spanned by a robust projection to obtain the deep soft labels in output layer. Finally, the most discriminating deep labels are obtained for enhancing performance. The method of achieving the deep labels of outside points is also elaborated. Simulations on several artificial and UCI datasets demonstrate the validity of our model, compared with other state-of-the-arts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chapelle, O., Scholkopf, B., Zien, A.: Semi-Supervised Learning. MIT Press, Cambridge (2006)

    Book  Google Scholar 

  2. Zhu, X.: Semi-supervised learning literature survey. Technical Report 1530, Univ. Wisconsin-Madison (2005)

    Google Scholar 

  3. Culp, M., Michailidis, G.: Graph-based semi-supervised learning. IEEE Tran. on Pattern Analysis and Machine Intelligence 30(1), 174–179 (2008)

    Article  Google Scholar 

  4. Nie, F.P., Xu, D., Li, X.L., Xiang, S.M.: Semi-Supervised Dimensionality Reduction and Classification through Virtual Label Regression. IEEE Transactions on Systems, Man and Cybernetics Part B: Cybernetics 41(3), 675–685 (2011)

    Article  Google Scholar 

  5. Cai, D., He, X.F., Han, J.W.: Semi-supervised discriminant analysis. In: Proceedings of IEEE International Conference on Computer Vision, Rio de Janeiro, Brazil, pp. 1–7 (2007)

    Google Scholar 

  6. Song, Y.Q., Nie, F.P., Zhang, C.S., Xiang, S.: A unified framework for semi-supervised dimensionality reduction. Pattern Recognition 41(9), 2789–2799 (2008)

    Article  MATH  Google Scholar 

  7. Zhang, Z., Chow, T., Zhao, M.B.: Trace Ratio Optimization based Semi-Supervised Nonlinear Dimensionality Reduction for Marginal Manifold Visualization. IEEE Trans. on Knowledge and Data Engineering 25(5), 1148–1161 (2013)

    Article  Google Scholar 

  8. Nie, F.P., Xiang, S.M., Jia, Y.Q., Zhang, C.S.: Semi-supervised orthogonal discriminant analysis via label propagation. Pattern Recognition 42(1), 2615–2627 (2009)

    Article  MATH  Google Scholar 

  9. Zhang, Z., Zhao, M.B., Chow, T.: Graph based Constrained Semi-Supervised Learning Framework via Label Propagation over Adaptive Neighborhood. IEEE Trans. on Knowledge and Data Engineering (December 2013). doi:10.1109/TKDE.2013.182

  10. Mangasarian, O., Wild, E.W.: Multisurface Proximal Support Vector Machine Classification via Generalized Eigenvalues. IEEE Trans. on Pattern Analysis and Machine Intelligence 28(1), 69–74 (2006)

    Article  Google Scholar 

  11. Belkin, M., Niyogi, P.: Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  12. Zang, F., Zhang, J.S.: Label propagation through sparse neighborhood and its applications. Neurocomputing 97, 267–277 (2012)

    Article  Google Scholar 

  13. Yang, N., Sang, Y., He, R., Wang, X.: Label propagation algorithm based on non-negative sparse representation. In: Li, K., Jia, L., Sun, X., Fei, M., Irwin, G.W. (eds.) LSMS 2010 and ICSEE 2010. LNCS, vol. 6330, pp. 348–357. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Cheng, H., Liu, Z., Yang, J.: Sparsity induced similarity measure for label propagation. In: Proceedings of the IEEE International Conference on Computer Vision (2009)

    Google Scholar 

  15. Bengio, Y.: Learning Deep Architectures for AI. Foundations and Trends in Machine Learning 2(1), 1–127 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hou, C.P., Nie, F.P., Li, X.L., Yi, D.Y., Wu, Y.: Joint Embedding Learning and Sparse Regression: A Framework for Unsupervised Feature Selection. IEEE Transactions on Cybernetics 44(6), 793–804 (2014)

    Article  Google Scholar 

  17. Li, Z.C., Liu, J., Tang, J.H., Lu, H.Q.: Robust Structured Subspace Learning for Data Representation. IEEE Trans. on Pattern Analysis and Machine Intelligence (2015). doi:10.1109/TPAMI.2015.2400461

  18. Yang, Y., Shen, H.T., Ma, Z.G., Huang, Z., Zhou, X.F.: L 2,1 -norm regularized discriminative feature selection for unsupervised learning. In: Proceeding of the International Joint Conferences on Artificial Intelligence (2011)

    Google Scholar 

  19. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Cholkopf, B.S.: Learning with local and global consistency. In: Proc. Advances in Neural Information Processing Systems (2004)

    Google Scholar 

  20. Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using Gaussian fields and harmonic functions. In: Proceedings of the International Conference on Machine Learning (2003)

    Google Scholar 

  21. Wang, F., Zhang, C.S.: Label propagation through linear Neighborhoods. IEEE Trans. on Knowledge and Data. Engineering 20(11), 55–67 (2008)

    Google Scholar 

  22. Wang, F., Zhang, C.S.: Label propagation through linear neighborhoods. In: Proceedings of International Conference on Machine Learning, Pittsburgh, Pennsylvania (2006)

    Google Scholar 

  23. Nie, F.P., Xiang, S.M., Liu, Y., Zhang, C.S.: A general graph-based semi-supervised learning with novel class discovery. Neural Computing Applications 19(4), 549–555 (2010)

    Article  Google Scholar 

  24. Liu, Y., Nie, F.P., Wu, J.G., Chen, L.H.: Semi-supervised feature selection based on label propagation and subset selection. In: Proceedings of the International Conference on Computer and Information Application (2010)

    Google Scholar 

  25. Turk, M., Pentland, A.: Face recognition using eigenfaces. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (1991)

    Google Scholar 

  26. Lee, H.: Tutorial on deep learning and applications. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2010)

    Google Scholar 

  27. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, Z., Jiang, W., Li, F., Zhang, L., Zhao, M., Jia, L. (2015). Projective Label Propagation by Label Embedding. In: Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science(), vol 9257. Springer, Cham. https://doi.org/10.1007/978-3-319-23117-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23117-4_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23116-7

  • Online ISBN: 978-3-319-23117-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics