Abstract
This paper presents a face recognition algorithm based on the matching of local features extracted from face images, namely SIFT. Some of the earlier approaches based on SIFT matching are sensitive to registration errors and usually rely on a very good initial alignment and illumination of the faces to be recognised. The method is based on a new image matching strategy between face images, that first establishes correspondences between feature points, and then uses the number of correct correspondences, together with the total number of matches and detected features, to determine the likelihood of the similarity between the face images.
The experimental results, performed on different datasets, demonstrate the effectiveness of the proposed algorithm for automatic face identification. More exhaustive experiments are planned in order to perform a fair comparison with other state of the art methods based on local features.
Chapter PDF
Similar content being viewed by others
Keywords
References
OpenVIDIA: Parallel GPU computer vision. http://openvidia.sourceforge.net
Ahonen, T., Hadid, A., Pietikäinen, M.: Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis Machine Intelligence 28(12), 2037–2041 (2006)
Aly, M.: Face recognition using sift features. CNS/Bi/EE report 186 (2006)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008)
Bicego, M., Lagorio, A., Grosso, E., Tistarelli, M.: On the use of sift features for face authentication. In: Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop, pp. 35–41 (2006)
Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)
Dreuw, P., Steingrube, P., Hanselmann, H., Ney, H.: SURF-face: face recognition under viewpoint consistency constraints. In: Proceedings of the British Machine Vision Conference, pp. 1–11 (2009)
Geng, C., Jiang, X.: Face recognition using SIFT features. In: Proceedings of the International Conference on Image Processing, pp. 3313–3316 (2009)
Geng, C., Jiang, X.: Face recognition based on the multi-scale local image structures. Pattern Recognition 44(10), 2565–2575 (2011)
Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intelligence 23(6), 643–660 (2001)
Hartley, R.I., Zisserman, A.: Multiple view geometry. Cambrige University Press (2000)
Jafri, R., Arabnia, H.R.: A Survey of Face Recognition Techniques. Journal of Information Processing Systems 5(2), 41–68 (2009)
Kisku, D., Rattani, A., Grosso, E., Tistarelli, M.: Face identification by SIFT-based complete graph topology. CoRR abs/1002.0411 (2010)
Križaj, J., Štruc, V., Pavešić, N.: Adaptation of SIFT features for robust face recognition. In: Campilho, A., Kamel, M. (eds.) ICIAR 2010. LNCS, vol. 6111, pp. 394–404. Springer, Heidelberg (2010)
Kumar, N., Berg, A., Belhumeur, P., Nayar, S.: Attribute and simile classifiers for face verification. In: Proceedings of the International Conference on Computer Vision, pp. 365–372 (2009)
Kuo, C.H., Lee, J.D.: A two-stage classifier using SVM and RANSAC for face recognition. In: Proceedings/TENCON IEEE Region 10 Annual International Conference, pp. 1–4 (2007)
Lalonde, M., Byrns, D., Gagnon, L., Teasdale, N., Laurendeau, D.: Real-time eye blink detection with GPU-based SIFT tracking. In: Proceedings of the Canadian Conference on Computer and Robot Vision, pp. 481–487 (2007)
Lenc, L., Král, P.: Novel matching methods for automatic face recognition using SIFT. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.) AIAI 2002. IFIP AICT, vol. 381, pp. 254–263. Springer, Heidelberg (2012)
Liu, C.: Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(5), 725–737 (2006)
Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, pp. 1150–1157 (1999)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)
Luo, J., Ma, Y., Takikawa, E., Lao, S., Kawade, M., Lu, B.L.: Person-specific SIFT features for face recognition. In: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 2 (2007)
Majumdar, A., Ward, R.K.: Discriminative sift features for face recognition. In: Electrical and Computer Engineering, CCECE 2009. Canadian Conference on, pp. 27–30 (2009)
Meer, P., Mintz, D., Rosenfeld, A., Kim, D.Y.: Robust regression methods for computer vision: a review. International Journal of Compuer Vision 6(1), 59–70 (1991)
Pham, T., Waillot, N., Lim, J., Chevallet, J.: Latent semantic fusion model for image retrieval and annotation. In: Proceedings of the ACM Conference on Information and Knowledge Management, pp. 439–444 (2007)
Se, S., Lowe, D., Little, J.: Vision-based mobile robot localization and mapping using scale-invariant features. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 2051–2058 (2001)
Shu, C., Ding, X., Fang, C.: Histogram of the oriented gradient for face recognition. Tsinghua Science and Technology 16(2), 216–224 (2011)
Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1701–1708 (2014)
Turk, M., Pentland, A.: Eigenfaces for recognition. Cognitive Neuroscience 3(1), 71–86 (1991)
Xiang, C., Fan, X., Lee, T.: Face recognition using recursive Fisher linear discriminant. IEEE Transactions on Image Processing 15(8), 2097–2105 (2006)
Zhao, W., Chellappa, R., Philips, P., Rosenfeld, A.: Face recognition: A literature survey. ACM Computing Survey, 399–458 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Di Mella, M., Isgrò, F. (2015). Face Recognition from Robust SIFT Matching. In: Murino, V., Puppo, E. (eds) Image Analysis and Processing — ICIAP 2015. ICIAP 2015. Lecture Notes in Computer Science(), vol 9280. Springer, Cham. https://doi.org/10.1007/978-3-319-23234-8_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-23234-8_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23233-1
Online ISBN: 978-3-319-23234-8
eBook Packages: Computer ScienceComputer Science (R0)