Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Formal Theory of Justifications

  • Conference paper
  • First Online:
Logic Programming and Nonmonotonic Reasoning (LPNMR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9345))

  • 924 Accesses

Abstract

We develop an abstract theory of justifications suitable for describing the semantics of a range of logics in knowledge representation, computational and mathematical logic. A theory or program in one of these logics induces a semantical structure called a justification frame. Such a justification frame defines a class of justifications each of which embodies a potential reason why its facts are true. By defining various evaluation functions for these justifications, a range of different semantics are obtained. By allowing nesting of justification frames, various language constructs can be integrated in a seamless way. The theory provides elegant and compact formalisations of existing and new semantics in logics of various areas, showing unexpected commonalities and interrelations, and creating opportunities for new expressive knowledge representation formalisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Negation in the head of (extended) answer set programs is different from the negation studied here, and the justification semantics defined below is not directly suitable to compute answer sets of programs with explicit negation. We focus on systems where the rules for facts and their negations are complementary, hence negation is classical. In contrast, rules of ASP for negative literals are independent of those for positive literals.

  2. 2.

    By dropping the constraint that \({\mathcal {F}_o}\) consists of logical facts only, we obtain extensions of all main semantics for a parameterized variant of logic programming.

  3. 3.

    This should not be confused with the nested logic programs of [22], where nesting refers to the expressions inside a logic program rule, and not sets of rules being nested altogether.

References

  1. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics of logic programs with aggregates. TPLP 7(3), 301–353 (2007)

    MATH  MathSciNet  Google Scholar 

  2. Son, T.C., Pontelli, E.: A constructive semantic characterization of aggregates in answer set programming. TPLP 7(3), 355–375 (2007)

    MATH  MathSciNet  Google Scholar 

  3. Denecker, M., De Schreye, D.: Justification semantics: A unifying framework for the semantics of logic programs. In: LPNMR, pp. 365–379. MIT Press (1993)

    Google Scholar 

  4. Denecker, M., Marek, V., Truszczyński, M.: Approximations, stable operators, well-founded fixpoints and applications in nonmonotonic reasoning. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 127–144. Springer, New York (2000)

    Chapter  Google Scholar 

  5. Denecker, M., Marek, V., Truszczyński, M.: Ultimate approximation and its application in nonmonotonic knowledge representation systems. Inf. Comput. 192(1), 84–121 (2004)

    Article  MATH  Google Scholar 

  6. Kozen, D.: Results on the propositional \(\mu \)-calculus. Theoret. Comput. Sci. 27(1), 333–354 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  7. Park, D.: Fixpoint induction and proofs of program properties. Mach. Intell. 5, 59–78 (1969)

    MATH  Google Scholar 

  8. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from theory to practice. Artif. Intell. 187, 52–89 (2012)

    Article  MathSciNet  Google Scholar 

  9. Mariën, M., Wittocx, J., Denecker, M., Bruynooghe, M.: SAT(ID): satisfiability of propositional logic extended with inductive definitions. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 211–224. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9, 365–385 (1991)

    Article  Google Scholar 

  11. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77, 321–358 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gupta, G., Bansal, A., Min, R., Simon, L., Mallya, A.: Coinductive logic programming and its applications. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 27–44. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Hou, P., De Cat, B., Denecker, M.: FO(FD): extending classical logic with rule-based fixpoint definitions. Theor. Pract. Log. Program. 10(4–6), 581–596 (2010)

    Article  MATH  Google Scholar 

  14. van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming language. J. ACM 23(4), 733–742 (1976)

    Article  MATH  Google Scholar 

  15. Fitting, M.: Fixpoint semantics for logic programming: a survey. Theoret. Comput. Sci. 278(1–2), 25–51 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Strass, H.: Approximating operators and semantics for abstract dialectical frameworks. Artif. Intell. 205, 39–70 (2013)

    Article  MathSciNet  Google Scholar 

  17. Fages, F.: A new fixpoint semantis for general logic programs compared with the well-founded and the stable model semantics. In: ICLP, p. 443. MIT Press (1990)

    Google Scholar 

  18. Schulz, C., Toni, F.: ABA-based answer set justification. Theor. Pract. Log. Program. 13(4-5-Online-Supplement) (2013)

    Google Scholar 

  19. Cabalar, P., Fandinno, J., Fink, M.: Causal graph justifications of logic programs. Theor. Pract. Log. Program. 14(4–5), 603–618 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pontelli, E., Son, T.C., Elkhatib, O.: Justifications for logic programs under answer set semantics. Theor. Pract. Log. Program. 9(1), 1–56 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Viegas Damásio, C., Analyti, A., Antoniou, G.: Justifications for logic programming. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 530–542. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  22. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Ann. Math. Artif. Intell. 25(3–4), 369–389 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hallnäs, L.: Partial inductive definitions. Theor. Comp. Sci. 87(1), 115–142 (1991)

    Article  MATH  Google Scholar 

  24. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artif. Intell. 93, 63–101 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Brewka, G., Woltran, S.: Abstract dialectical frameworks. In: KR, pp. 102–111 (2010)

    Google Scholar 

  26. Bogaerts, B., Vennekens, J., Denecker, M., Van den Bussche, J.: FO(C): a knowledge representation language of causality. TPLP 14((4–5–Online–Supplement)), 60–69 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Denecker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Denecker, M., Brewka, G., Strass, H. (2015). A Formal Theory of Justifications. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2015. Lecture Notes in Computer Science(), vol 9345. Springer, Cham. https://doi.org/10.1007/978-3-319-23264-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23264-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23263-8

  • Online ISBN: 978-3-319-23264-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics