Abstract
Time parallel time integration methods have received renewed interest over the last decade because of the advent of massively parallel computers, which is mainly due to the clock speed limit reached on today’s processors. When solving time dependent partial differential equations, the time direction is usually not used for parallelization. But when parallelization in space saturates, the time direction offers itself as a further direction for parallelization. The time direction is however special, and for evolution problems there is a causality principle: the solution later in time is affected (it is even determined) by the solution earlier in time, but not the other way round. Algorithms trying to use the time direction for parallelization must therefore be special, and take this very different property of the time dimension into account.We show in this chapter how time domain decomposition methods were invented, and give an overview of the existing techniques. Time parallel methods can be classified into four different groups: methods based on multiple shooting, methods based on domain decomposition and waveform relaxation, space-time multigrid methods and direct time parallel methods. We show for each of these techniques the main inventions over time by choosing specific publications and explaining the core ideas of the authors. This chapter is for people who want to quickly gain an overview of the exciting and rapidly developing area of research of time parallel methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
“In diesem Artikel studieren wir verschiedene Versionen einer Klasse paralleler Algorithmen, die ursprünglich von A. Bellen und M. Zennaro für Differenzengleichungen konzipiert und von ihnen ‘across the steps’ Methode genannt worden ist.”
- 2.
“Pour commencer, on expose l’idée sur l’exemple simple.”
- 3.
“C’est alors un exercice que de montrer la:”
- 4.
“Actually this method of continuing the computation is highly inefficient and is not recommended”, see [59].
- 5.
“The spectacular growth in the scale of integrated circuits being designed in the VLSI era has generated the need for new methods of circuit simulation. “Standard” circuit simulators, such as SPICE and ASTAP, simply take too much CPU time and too much storage to analyze a VLSI circuit”, see [52].
- 6.
“Note that since the oscillator is highly non unidirectional due to the feedback from v 3 to the NOR gate, the convergence of the iterated solutions is achieved with the number of iterations being proportional to the number of oscillating cycles of interest”, see [52].
- 7.
This example had already been proposed by Fox in 1954.
References
Al-Khaleel, M., Ruehli, A.E., Gander, M.J.: Optimized waveform relaxation methods for longitudinal partitioning of transmission lines. IEEE Trans. Circuits Syst. Regul. Pap. 56, 1732–1743 (2009)
Al-Khaleel, M.D., Gander, M.J., Ruehli, A.E.: Optimization of transmission conditions in waveform relaxation techniques for RC circuits. SIAM J. Numer. Anal. 52, 1076–1101 (2014)
Amodio, P., Brugnano, L.: Parallel solution in time of ODEs: some achievements and perspectives. Appl. Numer. Math. 59, 424–435 (2009)
Axelsson, A., Verwer, J.: Boundary value techniques for initial value problems in ordinary differential equations. Math. Comput. 45, 153–171 (1985)
Bastian, P., Burmeister, J., Horton, G.: Implementation of a parallel multigrid method for parabolic differential equations. In: Parallel Algorithms for Partial Differential Equations. Proceedings of the 6th GAMM seminar Kiel, pp. 18–27 (1990)
Bellen, A., Zennaro, M.: Parallel algorithms for initial-value problems for difference and differential equations. J. Comput. Appl. Math. 25, 341–350 (1989)
Bennequin, D., Gander, M.J., Halpern, L.: A homographic best approximation problem with application to optimized Schwarz waveform relaxation. Math. Comput. 78, 185–223 (2009)
Bjørhus, M.: On domain decomposition, subdomain iteration and waveform relaxation. Ph.D. thesis, University of Trondheim, Norway (1995)
Brugnano, L., Trigiante, D.: A parallel preconditioning technique for boundary value methods. Appl. Numer. Math. 13, 277–290 (1993)
Brugnano, L., Trigiante, D.: Convergence and stability of boundary value methods for ordinary differential equations. J. Comput. Appl. Math. 66, 97–109 (1996)
Brugnano, L., Trigiante, D.: Solving Differential Equations by Multistep Initial and Boundary Value Methods. CRC Press, Boca Raton (1998)
Burrage, K.: Parallel and Sequential Methods for Ordinary Differential Equations. Clarendon Press, New York (1995)
Chartier, P., Philippe, B.: A parallel shooting technique for solving dissipative ODEs. Computing 51, 209–236 (1993)
Christlieb, A.J., Macdonald, C.B., Ong, B.W.: Parallel high-order integrators. SIAM J. Sci. Comput. 32, 818–835 (2010)
Crann, D., Davies, A.J., Lai, C.-H., Leong, S.H.: Time domain decomposition for European options in financial modelling. Contemp. Math. 218, 486–491 (1998)
Deshpande, A., Malhotra, S., Schultz, M., Douglas, C.: A rigorous analysis of time domain parallelism. Parallel Algorithms Appl. 6, 53–62 (1995)
Douglas, J.Jr., Santos, J.E., Sheen, D., Bennethum, L.S.: Frequency domain treatment of one-dimensional scalar waves. Math. Models Methods Appl. Sci. 3, 171–194 (1993)
Douglas, C., Kim, I., Lee, H., Sheen, D.: Higher-order schemes for the Laplace transformation method for parabolic problems. Comput. Vis. Sci. 14, 39–47 (2011)
Emmett, M., Minion, M.L.: Toward an efficient parallel in time method for partial differential equations. Commun. Appl. Math. Comput. Sci. 7, 105–132 (2012)
Engquist, B., Ying, L.: Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers. Multiscale Model. Simul. 9, 686–710 (2011)
Falgout, R., Friedhoff, S., Kolev, T.V., MacLachlan, S., Schroder, J.B.: Parallel time integration with multigrid. SIAM J. Sci. Comput. 36, C635–C661 (2014)
Farhat, C., Cortial, J., Dastillung, C., Bavestrello, H.: Time-parallel implicit integrators for the near-real-time prediction of linear structural dynamic responses. Int. J. Numer. Methods Eng. 67, 697–724 (2006)
Franklin, M.A.: Parallel solution of ordinary differential equations. IEEE Trans. Comput. 100, 413–420 (1978)
Gander, M.J.: Overlapping Schwarz for linear and nonlinear parabolic problems. In: Proceedings of the 9th International Conference on Domain Decomposition, pp. 97–104 (1996). ddm.org
Gander, M.J.: A waveform relaxation algorithm with overlapping splitting for reaction diffusion equations. Numer. Linear Algebra Appl. 6, 125–145 (1998)
Gander, M.J.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44, 699–731 (2006)
Gander, M.J., Güttel, S.: ParaExp: a parallel integrator for linear initial-value problems. SIAM J. Sci. Comput. 35, C123–C142 (2013)
Gander, M.J., Hairer, E.: Nonlinear convergence analysis for the parareal algorithm. In: Widlund, O.B., Keyes, D.E. (eds.) Domain Decomposition Methods in Science and Engineering XVII. Lecture Notes in Computational Science and Engineering, vol. 60, pp. 45–56. Springer, Berlin (2008)
Gander, M.J., Halpern, L.: Absorbing boundary conditions for the wave equation and parallel computing. Math. Comput. 74, 153–176 (2004)
Gander, M.J., Halpern, L.: Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems. SIAM J. Numer. Anal. 45, 666–697 (2007)
Gander, M.J., Halpern, L.: A direct solver for time parallelization. In: 22nd International Conference of Domain Decomposition Methods. Springer, Berlin (2014)
Gander, M.J., Neumüller, M.: Analysis of a new space-time parallel multigrid algorithm for parabolic problems (2015, submitted)
Gander, M.J., Petcu, M.: Analysis of a Krylov subspace enhanced parareal algorithm for linear problems. In: ESAIM: Proceedings. EDP Sciences, vol. 25, pp. 114–129 (2008)
Gander, M.J., Stuart, A.M.: Space-time continuous analysis of waveform relaxation for the heat equation. SIAM J. Sci. Comput. 19, 2014–2031 (1998)
Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29, 556–578 (2007)
Gander, M.J., Halpern, L., Nataf, F.: Optimal convergence for overlapping and non-overlapping Schwarz waveform relaxation. In: Lai, C.-H., Bjørstad, P., Cross, M., Widlund, O. (eds.) Eleventh International Conference of Domain Decomposition Methods (1999). ddm.org
Gander, M.J., Halpern, L., Nataf, F.: Optimal Schwarz waveform relaxation for the one dimensional wave equation. SIAM J. Numer. Anal. 41, 1643–1681 (2003)
Gander, M.J., Jiang, Y.-L., Li, R.-J.: Parareal Schwarz waveform relaxation methods. In: Widlund, O.B., Keyes, D.E. (eds.) Domain Decomposition Methods in Science and Engineering XX. Lecture Notes in Computational Science and Engineering, vol. 60, pp. 45–56. Springer, Berlin (2013)
Gander, M.J., Kwok, F., Mandal, B.: Dirichlet-Neumann and Neumann-Neumann waveform relaxation algorithms for parabolic problems (2015, submitted)
Gear, C.W.: Parallel methods for ordinary differential equations. Calcolo 25, 1–20 (1988)
Giladi, E., Keller, H.B.: Space time domain decomposition for parabolic problems. Numer. Math. 93, 279–313 (2002)
Güttel, S.: A parallel overlapping time-domain decomposition method for ODEs. In: Domain Decomposition Methods in Science and Engineering XX, pp. 459–466. Springer, Berlin (2013)
Hackbusch, W.: Parabolic multi-grid methods. In: Glowinski, R. Lions, J.-L. (eds.) Computing Methods in Applied Sciences and Engineering, VI. pp. 189–197. North-Holland, Amsterdam (1984)
Hoang, T.-P., Jaffré, J., Japhet, C., Kern, M., Roberts, J.E.: Space-time domain decomposition methods for diffusion problems in mixed formulations. SIAM J. Numer. Anal. 51, 3532–3559 (2013)
Horton, G., Vandewalle, S.: A space-time multigrid method for parabolic partial differential equations. SIAM J. Sci. Comput. 16, 848–864 (1995)
Horton, G., Vandewalle, S., Worley, P.: An algorithm with polylog parallel complexity for solving parabolic partial differential equations, SIAM J. Sci. Comput. 16, 531–541 (1995)
Keller, H.B.: Numerical Solution for Two-Point Boundary-Value Problems. Dover Publications Inc, New York (1992)
Kiehl, M.: Parallel multiple shooting for the solution of initial value problems. Parallel Comput. 20, 275–295 (1994)
Kogge, P.M., Stone, H.S.: A parallel algorithm for the efficient solution of a general class of recurrence equations. IEEE Trans. Comput. 100, 786–793 (1973)
Kwok, F.: Neumann-Neumann waveform relaxation for the time-dependent heat equation. In: Domain Decomposition Methods in Science and Engineering, DD21. Springer, Berlin (2014)
Lai, C.-H.: On transformation methods and the induced parallel properties for the temporal domain. In: Magoulès, F. (ed.) Substructuring Techniques and Domain Decomposition Methods, pp. 45–70. Saxe-Coburg Publications, Scotland (2010)
Lelarasmee, E., Ruehli, A.E., Sangiovanni-Vincentelli, A. L.: The waveform relaxation method for time-domain analysis of large scale integrated circuits. IEEE Trans. CAD IC Syst. 1, 131–145 (1982)
Lindelöf, E.: Sur l’application des méthodes d’approximations successives à l’étude des intégrales réelles des équations différentielles ordinaires. J. de Math. Pures et Appl. 10, 117–128 (1894)
Lions, J.-L., Maday, Y., Turinici, G.: A parareal in time discretization of PDEs. C.R. Acad. Sci. Paris, Serie I 332, 661–668 (2001)
Lubich, C., Ostermann, A.: Multi-grid dynamic iteration for parabolic equations. BIT 27, 216–234 (1987)
Maday, Y., Rønquist, E.M.: Parallelization in time through tensor-product space–time solvers. C.R. Math. 346, 113–118 (2008)
Maday, Y., Turinici, G.: The parareal in time iterative solver: a further direction to parallel implementation. In: Domain Decomposition Methods in Science and Engineering, pp. 441–448. Springer, Berlin (2005)
Mandal, B.: A time-dependent Dirichlet-Neumann method for the heat equation. In: Domain Decomposition Methods in Science and Engineering, DD21. Springer, Berlin (2014)
Milne, W.E., Wiley, J.: Numerical Solution of Differential Equations. vol. 19(3). Wiley, New York (1953)
Minion, M.L.: A hybrid parareal spectral deferred corrections method. Commun. Appl. Math. Comput. Sci. 5, 265–301 (2010)
Miranker, W.L., Liniger, W.: Parallel methods for the numerical integration of ordinary differential equations. Math. Comput. 91, 303–320 (1967)
Nataf, F., Rogier. F.: Factorization of the convection-diffusion operator and the Schwarz algorithm. M 3 AS 5, 67–93 (1995)
Neumüller, M.: Space-time methods: fast solvers and applications, Ph.D. thesis, University of Graz (2013)
Nievergelt, J.: Parallel methods for integrating ordinary differential equations. Commun. ACM 7, 731–733 (1964)
Picard, E.: Sur l’application des méthodes d’approximations successives à l’étude de certaines équations différentielles ordinaires. J. de Math. Pures et Appl. 9, 217–271 (1893)
Ruprecht, D., Krause, R.: Explicit parallel-in-time integration of a linear acoustic-advection system. Comput. Fluids 59, 72–83 (2012)
Saha, P., Stadel, J., Tremaine, S.: A parallel integration method for solar system dynamics. Astron. J. 114, 409–415 (1997)
Saltz, J.H., Naik, V.K.: Towards developing robust algorithms for solving partial differential equations on MIMD machines. Parallel Comput. 6, 19–44 (1988)
Sameh, A.H., Brent, R.P.: Solving triangular systems on a parallel computer. SIAM J. Numer. Anal. 14, 1101–1113 (1977)
Schwarz, H.A.: Über einen Grenzübergang durch alternierendes Verfahren. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 15, 272–286 (1870)
Shampine, L., Watts, H.: Block implicit one-step methods. Math. Comput. 23, 731–740 (1969)
Sheen, D., Sloan, I., Thomée, V.: A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature. Math. Comput. Am. Math. Soc. 69, 177–195 (1999)
Sheen, D., Sloan, I.H., Thomée, V.: A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature. IMA J. Numer. Anal. 23, 269–299 (2003)
Simoens, J., Vandewalle, S.: Waveform relaxation with fast direct methods as preconditioner. SIAM J. Sci. Comput. 21, 1755–1773 (2000)
Speck, R., Ruprecht, D., Krause, R., Emmett, M., Minion, M., Winkel, M., Gibbon, P.: A massively space-time parallel n-body solver. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, Salt Lake City, p. 92. IEEE Computer Society Press, Los Alamitos (2012)
Speck, R., Ruprecht, D., Emmett, M., Minion, M., Bolten, M., Krause, R.: A multi-level spectral deferred correction method. arXiv:1307.1312 (2013, arXiv preprint)
Thomée, V.: A high order parallel method for time discretization of parabolic type equations based on Laplace transformation and quadrature. Int. J. Numer. Anal. Model. 2, 121–139 (2005)
Vandewalle, S., Van de Velde, E.: Space-time concurrent multigrid waveform relaxation. Ann. Numer. Math. 1, 347–363 (1994)
Womble, D.E.: A time-stepping algorithm for parallel computers. SIAM J. Sci. Stat. Comput. 11, 824–837 (1990)
Worley, P.: Parallelizing across time when solving time-dependent partial differential equations. In: Sorensen, D. (ed.) Proceedings of 5th SIAM Conference on Parallel Processing for Scientific Computing. SIAM, Houston (1991)
Acknowledgements
The author is very thankful for the comments of Stefan Vandewalle, which greatly improved this manuscript and also made the content more complete. We thank the Bibliotheque de Geneve for granting permission to reproduce pictures from the original sources.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Gander, M.J. (2015). 50 Years of Time Parallel Time Integration. In: Carraro, T., Geiger, M., Körkel, S., Rannacher, R. (eds) Multiple Shooting and Time Domain Decomposition Methods. Contributions in Mathematical and Computational Sciences, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-23321-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-23321-5_3
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23320-8
Online ISBN: 978-3-319-23321-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)