Abstract
Snow avalanches pose a serious threat in alpine regions. They may cause significant damage and fatal accidents. Assessing the local avalanche hazard is therefore of vital importance. This assessment is based, amongst others, on daily collected meteorological data as well as expert knowledge concerning avalanche activity. To a data set comprising meteorological and avalanche data collected for the Canton of Glarus in Eastern Switzerland over a period of 40 years, we applied different machine learning strategies aiming at modeling a decision support system in avalanche forecasting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bishop, C.M.: Pattern Recognition and Machine Learning, vol. 1. Springer, New York (2006)
Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press, Boca Raton (1984)
Bründl, M., Etter, H.J., Steiniger, M., Klingler, C., Rhyner, J., Ammann, W.: IFKIS—a basis for managing avalanche risk in settlements and on roads in Switzerland. Nat. Hazards Earth Syst. Sci. 4(2), 257–262 (2004)
Buser, O., Bütler, M., Good, W.: Avalanche forecast by the nearest neighbour method. Int. Assoc. Hydrol. Sci. 162(2), 557–570 (1987)
Chen, C., Liaw, A., Breiman, L.: Using Random Forest to Learn Imbalanced Data. Technical Report, University of California, Berkeley (2004)
Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27(8), 861–874 (2006)
Gassner, M., Brabec, B.: Nearest neighbour models for local and regional avalanche forecasting. Nat. Hazards Earth Syst. Sci. 2, 247–253 (2002)
Gassner, M., Etter, H.J., Birkeland, K., Leonard, T.: NXD2000: An improved avalanche forecasting program based on the nearest neighbor method. In: ISSW 2000. pp. 52–59. Big Sky, Montana (2000)
Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)
Hand, D.J., Mannila, H., Smyth, P.: Principles of Data Mining. MIT press, Cambridge (2001)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer Series in Statistics, 2nd edn. Springer, New York (2009)
Hendrikx, J., Murphy, M., Onslow, T.: Classification trees as a tool for operational avalanche forecasting on the Seward Highway, Alaska. Cold Reg. Sci. Technol. 97, 113–120 (2014)
Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1), 273–324 (1997)
McClung, D., Schaerer, P.A.: The Avalanche Handbook. The Mountaineers Books, Seattle WA (2006)
Mitterer, C., Schweizer, J.: Analyzing the atmosphere-snow energy balance for wet-snow avalanche prediction. In: ISSW 2012. pp. 77–83. Big Sky, Montana (2012)
Möhle, S., Bründl, M., Beierle, C.: Modeling a system for decision support in snow avalanche warning using balanced random forest and weighted random forest. In: Agre, G., Hitzler, P., Krisnadhi, A., Kuznetsov, S. (eds.) Artificial Intelligence: Methodology, Systems, and Applications. LNCS, vol. 8722, pp. 80–91. Springer, Switzerland (2014)
Schweizer, J., Mitterer, C., Stoffel, L.: On forecasting large and infrequent snow avalanches. Cold Reg. Sci. Technol. 59(2), 234–241 (2009)
Weiss, G.M.: Mining with rarity: a unifying framework. ACM SIGKDD Explor. Newsl. 6(1), 7–19 (2004)
WSL-Institut für Schnee- und Lawinenforschung SLF, Bundesamt für Umwelt BAFU, Schweizerische Interessengemeinschaft Lawinenwarnsysteme (SILS): Praxishilfe. Arbeit im Lawinendienst: Organisation, Beurteilung lokale Gefährdung und Dokumentation. http://www.slf.ch/dienstleistungen/merkblaetter/praxishilfe_lawdienst_deutsch.pdf
Acknowledgments
The authors wish to thank the avalanche service of the Canton of Glarus, Switzerland, and the WSL Institute for Snow and Avalanche Research SLF in Davos, Switzerland, for providing the data on which this work is based.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Möhle, S., Beierle, C. (2016). Supporting the Forecast of Snow Avalanches in the Canton of Glarus in Eastern Switzerland: A Case Study. In: Gruca, A., Brachman, A., Kozielski, S., Czachórski, T. (eds) Man–Machine Interactions 4. Advances in Intelligent Systems and Computing, vol 391. Springer, Cham. https://doi.org/10.1007/978-3-319-23437-3_38
Download citation
DOI: https://doi.org/10.1007/978-3-319-23437-3_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23436-6
Online ISBN: 978-3-319-23437-3
eBook Packages: EngineeringEngineering (R0)