Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Epidemics Modeling by Spatiotemporal Constraint Data

  • Living reference work entry
  • First Online:
Encyclopedia of GIS
  • 80 Accesses

Synonyms

Epidemics; Infectious diseases; Moving objects; Spatio-temporal data

Historical Background

Infectious disease outbreaks are critical threats to public health and national security (Damianos et al., 2002; Hufnagel et al., 2004). With greatly expanded travel and trade, infectious diseases can quickly spread across large areas causing major epidemics. Efficient computerized reasoning about epidemics is essential to detect their outbreak and nature, to provide fast medical aid to affected people and animals, and to prevent their further spread.

Epidemiological data are spatiotemporal data, that is, they have a spatial distribution that changes over time (Clements and Pfeiffer, 2009; Ozdenerol et al., 2013; Sintchenko and Gallego, 2009). Epidemiological data are also recursive in nature. That means that the best predictions of the spread of infections are based on earlier situations. These characteristics of epidemics make them special in terms of geographic information systems,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Clements ACA, Pfeiffer DU (2009) Emerging viral zoonoses: frameworks for spatial and spatiotemporal risk assessment and resource planning. Vet J 182(1):21–30

    Article  Google Scholar 

  • Damianos L, Ponte J, Wohlever S, Reeder F, Day D, Wilson G, Hirschman L (2002) MiTAP for bio-security: a case study. AI Mag 23(4):13–29

    Google Scholar 

  • Hufnagel L, Brockmann D, Geisel T (2004) Forecast and control of epidemics in a globalized world. Proc Natl Acad Sci USA 101(42):15124–15129

    Article  Google Scholar 

  • Kanellakis PC, Kuper GM, Revesz PZ (1995) Constraint query languages. J Comput Syst Sci 51(1):26–52

    Article  MathSciNet  Google Scholar 

  • Kuper GM, Libkin L, Paredaens J (eds) (2000) Constraint databases. Springer, Berlin/New York

    MATH  Google Scholar 

  • Langran G (1992) Time in geographical information systems. Taylor & Francis, London/New York

    Google Scholar 

  • Li L, Revesz PZ (2004) Interpolation methods for spatio-temporal geographic data. Comput Environ Urban Syst 28(3):201–227

    Article  Google Scholar 

  • Ozdenerol E, Taff GN, Akkus C (2013) Exploring the spatio-temporal dynamics of reservoir hosts, vectors, and human hosts of West Nile virus: a review of the recent literature. Int J Environ Res Public Health 10(11):5399–5432

    Article  Google Scholar 

  • Pennsylvania’s West Nile Virus Control Program (2004) West Nile virus surveillance maps: http://www.westnile.state.pa.us/surv.htm

  • Raffaetà A, Renso C, Turini F (2002) Enhancing GISs for spatio-temporal reasoning. In: 10th ACM international symposium on advances in geographic information systems, McLean. ACM Press, pp 42–48

    Google Scholar 

  • Revesz PZ (2010) Introduction to databases: from biological to spatio-temporal. Springer, New York

    Book  MATH  Google Scholar 

  • Revesz PZ, Wu S (2006) Spatiotemporal reasoning about epidemiological data. Artif Intell Med 38(2):157–170

    Article  Google Scholar 

  • Revesz PZ, Triplet T (2011) Temporal data classification using linear classifiers. Inf Syst 36(1):30–41

    Article  MathSciNet  Google Scholar 

  • Revesz PZ, Chen R, Kanjamala P, Li Y, Liu Y, Wang Y (2000) The MLPQ/GIS constraint database system. In: ACM SIGMOD international conference on management of data, Dallas

    Book  Google Scholar 

  • Sintchenko V, Gallego B (2009) Laboratory-guided detection of disease outbreaks: three generations of surveillance systems. Archiv Pathol Lab Med 133(6):916–925

    Google Scholar 

  • Theophilides CN, Ahearn SC, Grady S, Merlino M (2003) Identifying West Nile virus risk areas: the dynamic continuous-area space-time system. Am J Epidemiol 157(9):843–854

    Article  Google Scholar 

  • US Geological Survey (2004) West Nile virus maps: http://westnilemaps.usgs.gov/

  • Worboys MF (1995) GIS: a computing perspective. Taylor & Francis, London/Bristol

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Z Revesz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Revesz, P.Z., Wu, S. (2016). Epidemics Modeling by Spatiotemporal Constraint Data. In: Shekhar, S., Xiong, H., Zhou, X. (eds) Encyclopedia of GIS. Springer, Cham. https://doi.org/10.1007/978-3-319-23519-6_1611-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23519-6_1611-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-23519-6

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics